nanoscale interactions
Recently Published Documents


TOTAL DOCUMENTS

52
(FIVE YEARS 14)

H-INDEX

13
(FIVE YEARS 3)

2021 ◽  
pp. 2101484
Author(s):  
Sheeana Gangadoo ◽  
Chenglong Xu ◽  
Daniel Cozzolino ◽  
Kay Latham ◽  
Enrico Della Gaspera ◽  
...  

Pharmaceutics ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1594
Author(s):  
Gabriela Fabiola Știufiuc ◽  
Valentin Toma ◽  
Anca Onaciu ◽  
Vasile Chiș ◽  
Constantin Mihai Lucaciu ◽  
...  

Chiral separation is an important issue for the pharmaceutical industry. Over the years, several separation methods have been developed, mainly based on chromatography. Their working principle is based on the formation of transient diastereoisomers, but the very subtle nanoscale interactions responsible for separation are not always understood. Recently, Raman and surface-enhanced Raman (SERS) spectroscopy have provided promising results in this field. Here we present Raman/SERS experimental data that provide useful information concerning the nanoscale interactions between propranolol enantiomers and α, β, and γ cyclodextrins. Raman spectroscopy was used to prove the formation of host–guest intermolecular complexes having different geometries of interaction. The occurrence of new vibrational bands and a change in the intensities of others are direct proofs of complexes’ formation. These observations were confirmed by DFT calculations. By performing SERS measurements on a new type of plasmonic substrate, we were able to prove the intermolecular interactions responsible for PRNL discrimination. It turned out that the interaction strength between the substrate and the intermolecular complexes is of paramount importance for SERS-based chiral discrimination. This approach could represent a very good starting point for the evaluation of molecular interactions manifesting between other pharmaceutical compounds and different classes of chiral selectors.


2021 ◽  
Vol 7 (32) ◽  
pp. eabg5882
Author(s):  
Abhay Goyal ◽  
Ivan Palaia ◽  
Katerina Ioannidou ◽  
Franz-Josef Ulm ◽  
Henri van Damme ◽  
...  

Cement is the most produced material in the world. A major player in greenhouse gas emissions, it is the main binding agent in concrete, providing a cohesive strength that rapidly increases during setting. Understanding how such cohesion emerges is a major obstacle to advances in cement science and technology. Here, we combine computational statistical mechanics and theory to demonstrate how cement cohesion arises from the organization of interlocked ions and water, progressively confined in nanoslits between charged surfaces of calcium-silicate-hydrates. Because of the water/ions interlocking, dielectric screening is drastically reduced and ionic correlations are proven notably stronger than previously thought, dictating the evolution of nanoscale interactions during cement hydration. By developing a quantitative analytical prediction of cement cohesion based on Coulombic forces, we reconcile a fundamental understanding of cement hydration with the fully atomistic description of the solid cement paste and open new paths for scientific design of construction materials.


2021 ◽  
Author(s):  
Muhammad Aamir Iqbal ◽  
Naila Ashraf ◽  
Wajeehah Shahid ◽  
Muhammad Awais ◽  
Abdullah Khan Durrani ◽  
...  

Nanophotonics encompasses a wide range of nontrivial physical effects including light-matter interactions that are well beyond diffraction limits, and have opened up new avenues for a variety of applications in light harvesting, sensing, luminescence, optical switching, and media transmitting technologies. Recently, growing expertise of fusing nanotechnology and photonics has become fundamental, arising outskirts, challenging basic experimentation and opportunities for new technologies in our daily lives, and played a central role in many optical systems. It entails the theoretical study of photon’s interactions with matter at incredibly small scales, known as nanostructures, in order to prepare nanometer scale devices and accessories for processing, development, slowing down, influencing, and/or regulating photons through comprehending their behavior while interacting with or otherwise traveling via matter. This multidisciplinary field has also made an impact on industry, allowing researchers to explore new horizons in design, applied science, physical science, chemistry, materials science, and biomedical technologies. The foundations, nano-confinements, quantum manifestations, nanoscale interactions, numerical methods, and peculiarities of nonlinear optical phenomena in nano-photonics as well as projected nano-photonics consumption’s in our cutting-edge world, will be covered in this chapter.


2021 ◽  
Author(s):  
Emanuele Marino ◽  
Oleg Vasilyev ◽  
Bas B. Kluft ◽  
Milo J.B. Stroink ◽  
Svyatoslav Kondrat ◽  
...  

Nanocrystal assembly represents the key fabrication step to develop next-generation optoelectronic devices with properties defined from the bottom-up. Despite numerous efforts, our limited understanding of nanoscale interactions has so far...


2020 ◽  
Author(s):  
Samuel Schmidt ◽  
Bettina Weigelin ◽  
Joost te Riet ◽  
Veronika te Boekhorst ◽  
Mariska te Lindert ◽  
...  

SummaryCell migration is a force-dependent adaptive process mediated by integrin-dependent adhesion as well as other yet poorly defined interactions to the extracellular matrix. Using enzymatic multi-targeted digestion of sugar moieties on the surface of mesenchymal cells and leukocytes after interference with integrin function, we demonstrate that the surface glycocalyx represents an independent adhesion system. The glycocalyx mediates cell attachment to ECM ligand in the 100-500 pN force range and amoeboid migration in 3D environments in vitro and in vivo. Glycan-based adhesions consist of actin-rich membrane deformations and appositions associated with bleb-like and other protrusions forming complex-shaped sub-micron contact sites to ECM fibrils. These data implicate the glycocalyx in mediating generic stickiness to support nanoscale interactions (nanogrips) between the cell surface and ECM, mechano-coupling, and migration.


Sign in / Sign up

Export Citation Format

Share Document