phosphonic acids
Recently Published Documents


TOTAL DOCUMENTS

755
(FIVE YEARS 58)

H-INDEX

47
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Christian Honnigfort ◽  
Leon Topp ◽  
Natalia García Rey ◽  
Andreas Heuer ◽  
Björn Braunschweig

Smart surfaces that can change their wetting behavior on demand are interesting for applications such as self-cleaning surfaces or lab-on-a-chip devices. In order to functionalize aluminum oxide surfaces, we have synthesized arylazopyrazole phosphonic acids (butyl-AAP-C18PA) that represent a new class of photoswitchable molecules for these oxide surfaces. Butyl-AAP-C18PA monolayers were deposited on alpha-Al2O3(0001) and show reversible E/Z photo-switching with UV (Z) and green (E) light that can trigger contact angle changes of up to ~10°. We monitored these changes on the macroscopic level by recording the dynamic contact angle while the monolayer was switched in situ from the E to the Z state. On the molecular level, time-resolved vibrational sum-frequency generation (SFG) spectroscopy provided information on the kinetic changes within the AAP monolayer and the relevant characteristic time scales for E to Z switching and vice versa. In addition, vibrational SFG at different relative humidity indicates that the thermal stability of the Z configuration is largely influenced by the presence of water and that water can stabilize the Z state and, thus, hinder the AAP monolayer to switch into the E state when it is immersed in H2O. Having established the characteristic times for switching on the molecular scale from SFG spectroscopy, we additional measure the dynamic contact angle. Further, we reveal the time scales of the coupled substrate and droplet dynamics which we have extracted individually. For that, we report on a relaxation model, that can be solved analytically and which is verified via comparison with simulations of a Lennard Jones system and a comparison with experimental data. Indeed, our modelling of these coupled relaxation processes allows us to predict the non-trivial variation of the time-dependence of the contact angle when changing the size of the droplet. The observed slowing-down for E to Z switching upon the presence of the droplet is rationalized in terms of specific interactions of water with the exposed AAP moieties.


2021 ◽  
Author(s):  
Loren Deblock ◽  
Rohan Pokratath ◽  
Klaartje De Buysser ◽  
Jonathan De Roo

Iron oxide and hafnium oxide nanocrystals are two of the few successful examples of inorganic nanocrystals used in a clinical setting. Although crucial to their application, their aqueous surface chemistry is not fully understood. The literature contains conflicting reports regarding the optimum binding group. To alleviate these inconsistencies, we set out to systematically investigate the interaction of carboxylic acids, phosphonic acids and catechols to metal oxide nanocrystals in polar media. Using Nuclear Magnetic Resonance spectroscopy and Dynamic Light Scattering, we map out the pH-dependent binding affinity of the ligands towards hafnium oxide nanocrystals (an NMR compatible model system). Carboxylic acids easily desorb in water from the surface and only provide limited colloidal stability from pH 2 – 6. Phosphonic acids on the other hand provide colloidal stability over a broader pH range but also feature a pH-dependent desorption from the surface. They are most suited for acidic to neutral environments (pH < 8). Finally, nitrocatechol derivatives provide a tightly bound ligand shell and colloidal stability at physiological and basic pH (6-10). While dynamically bound ligands (carboxylates and phosphonates) do not provide colloidal stability in phosphate buffered saline, the tightly bound nitrocatechols provide long term stability. We thus shed light on the complex ligand binding dynamics on metal oxide nanocrystals in aqueous environments. Finally, we provide a practical colloidal stability map, guiding researchers to rationally design ligands for their desired application.


Molecules ◽  
2021 ◽  
Vol 26 (18) ◽  
pp. 5637
Author(s):  
Damian Trzepizur ◽  
Anna Brodzka ◽  
Dominik Koszelewski ◽  
Ryszard Ostaszewski

Here, we report straightforward and selective synthetic procedures for mono- and diesterification of phosphonic acids. A series of alkoxy group donors were studied and triethyl orthoacetate was found to be the best reagent as well as a solvent for the performed transformations. An important temperature effect on the reaction course was discovered. Depending on the reaction temperature, mono- or diethyl esters of phosphonic acid were obtained exclusively with decent yields. The substrate scope of the proposed methodology was verified on aromatic as well as aliphatic phosphonic acids. The designed method can be successfully applied for small- and large-scale experiments without significant loss of selectivity or reaction yield. Several devoted experiments were performed to give insight into the reaction mechanism. At 30 °C, monoesters are formed via an intermediate (1,1-diethoxyethyl ester of phosphonic acid). At higher temperatures, similar intermediate forms give diesters or stable and detectable pyrophosphonates which were also consumed to give diesters. 31P NMR spectroscopy was used to assign the structure of pyrophosphonate as well as to monitor the reaction course. No need for additional reagents and good accessibility and straightforward purification are the important aspects of the developed protocols.


2021 ◽  
Vol 22 (17) ◽  
pp. 9590
Author(s):  
Anna Nasulewicz-Goldeman ◽  
Waldemar Goldeman ◽  
Anna Nikodem ◽  
Marcin Nowak ◽  
Diana Papiernik ◽  
...  

Osteoporosis is a skeletal disease associated with excessive bone turnover. Among the compounds with antiresorptive activity, nitrogen-containing bisphosphonates play the most important role in antiosteoporotic treatment. In previous studies, we obtained two aminomethylidenebisphosphonates—benzene-1,4-bis[aminomethylidene(bisphosphonic)] (WG12399C) acid and naphthalene-1,5-bis[aminomethylidene(bisphosphonic)] (WG12592A) acid—which showed a significant antiproliferative activity toward J774E macrophages, a model of osteoclast precursors. The aim of these studies was to evaluate the antiresorptive activity of these aminobisphosphonates in ovariectomized (OVX) Balb/c mice. The influence of WG12399C and WG12592A administration on bone microstructure and bone strength was studied. Intravenous injections of WG12399C and WG12592A bisphosphonates remarkably prevented OVX-induced bone loss; for example, they sustained bone mineral density at control levels and restored other bone parameters such as trabecular separation. This was accompanied by a remarkable reduction in the number of TRAP-positive cells in bone tissue. However, a significant improvement in the quality of bone structure did not correlate with a parallel increase in bone strength. In ex vivo studies, WG12399C and WG12592A remarkably bisphosphonates reduced osteoclastogenesis and partially inhibited the resorptive activity of mature osteoclasts. Our results show interesting biological activity of two aminobisphosphonates, which may be of interest in the context of antiresorptive therapy.


Molecules ◽  
2021 ◽  
Vol 26 (17) ◽  
pp. 5303
Author(s):  
Nikoletta Harsági ◽  
Réka Henyecz ◽  
Péter Ábrányi-Balogh ◽  
László Drahos ◽  
György Keglevich

It is well-known that the P-acids including phosphonic acids resist undergoing direct esterification. However, it was found that a series of alkylphoshonic acids could be involved in monoesterification with C2–C4 alcohols under microwave (MW) irradiation in the presence of [bmim][BF4] as an additive. The selectivity amounted to 80–98%, while the isolated yields fell in the range of 61–79%. The method developed is a green method for P-acid esterification. DFT calculations at the M062X/6–311+G (d,p) level of theory (performed considering the solvent effect of the corresponding alcohol) explored the three-step mechanism, and justified a higher enthalpy of activation (160.6–194.1 kJ·mol−1) that may be overcome only by MW irradiation. The major role of the [bmim][BF4] additive is to increase the absorption of MW energy. The specific chemical role of the [BF4] anion of the ionic liquid in an alternative mechanism was also raised by the computations.


2021 ◽  
Author(s):  
Katie Lim ◽  
Albert Lee ◽  
Vladimir Atanasov ◽  
Jochen Kerres ◽  
Santosh Adhikari ◽  
...  

Abstract Fuel cells operating at above 100 °C under anhydrous conditions provide an ideal solution for the heat rejection problem of heavy-duty vehicle applications. Here, we report protonated phosphonic acid electrodes that remarkably improve fuel cell performance. The protonated phosphonic acids are comprised of tetrafluorostyrene phosphonic acid and perfluorosulfonic acid polymers in which a proton of the perfluorosulfonic acid is transferred to the phosphonic acid to enhance the anhydrous proton conduction of fuel cell electrodes. By implementing this material into fuel cell electrodes, we obtained a fuel cell exhibiting a rated power density of 780 milliwatts per square centimeter at 160 °C, with minimal degradation during 2,500 hours of operation, and 700 thermal cycles from 40 to 160 °C under load.


Organics ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 107-117
Author(s):  
Mattia Forchetta ◽  
Valeria Conte ◽  
Giulia Fiorani ◽  
Pierluca Galloni ◽  
Federica Sabuzi

Owing to the attractiveness of organic phosphonic acids and esters in the pharmacological field and in the functionalization of conductive metal-oxides, the research of effective synthetic protocols is pivotal. Among the others, ω-bromoalkylphosphonates are gaining particular attention because they are useful building blocks for the tailored functionalization of complex organic molecules. Hence, in this work, the optimization of Michaelis–Arbuzov reaction conditions for ω-bromoalkylphosphonates has been performed, to improve process sustainability while maintaining good yields. Synthesized ω-bromoalkylphosphonates have been successfully adopted for the synthesis of new KuQuinone phosphonate esters and, by hydrolysis, phosphonic acid KuQuinone derivatives have been obtained for the first time. Considering the high affinity with metal-oxides, KuQuinones bearing phosphonic acid terminal groups are promising candidates for biomedical and photo(electro)chemical applications.


2021 ◽  
Vol 9 ◽  
Author(s):  
Magdalena Rapp ◽  
Klaudia Margas-Musielak ◽  
Patrycja Kaczmarek ◽  
Agnieszka Witkowska ◽  
Tomasz Cytlak ◽  
...  

The synthesis of the stable surrogates of an important amino acid (R)-4-amino-3-hydroxybutyric acid (GABOB) such as substituted hydroxy aminophosphonic acids bearing a quaternary stereogenic center is presented. Highly diastereoselective formations of fluorinated spiroepoxy alkylphosphonate or related tertiary carbon-containing oxiranes from β-keto phosphonates possessing methyl, phenyl, or cyclohexenyl substituents, are reported. Stereoselective acid-promoted epoxide opening by bromide or azide followed by reduction/protection afforded tertiary bromides or N-Boc derivatives of β-amino-γ-hydroxy alkylphosphonates in most cases, while the reactions of oxiranes with different amines yielded their β-hydroxy-γ-amino regioisomers. Surprisingly, during the synthesis of amino phosphonic acids, we observe that the acid-induced rearrangement proceeded in a high diastereospecific manner, leading finally to substituted β-hydroxy-γ-aminoalkylphosphonic acids.


Sign in / Sign up

Export Citation Format

Share Document