scholarly journals Determining Excited-State Structures and Photophysical Properties in Phenylphosphine Rhenium(I) Diimine Biscarbonyl Complexes Using Time-Resolved Infrared and X-ray Absorption Spectroscopies

Author(s):  
Yuushi Shimoda ◽  
Kiyoshi Miyata ◽  
Masataka Funaki ◽  
Tatsuki Morimoto ◽  
Shunsuke Nozawa ◽  
...  

We have explored the structural factors on the photophysical properties in two rhenium(I) diimine complexes in acetonitrile solution, cis,trans-[Re(dmb)(CO)<sub>2</sub>(PPh<sub>2</sub>Et)<sub>2</sub>]+ (Et(2,2)) and cis,trans-[Re(dmb)(CO)<sub>2</sub>(PPh<sub>3</sub>)<sub>2</sub>]+ ((3,3)) (dmb = 4,4'-dimethyl-2,2'-bipyridine, Ph = phenyl, Et = ethyl) using the combination method of time-resolved infrared spectroscopy, time-resolved extended X-ray absorption fine structure, and quantum chemical calculations. The difference between these complexes is the number of phenyl groups in the phosphine ligand, and this only indirectly affects the central Re(I). Despite this minor difference, the complexes exhibit large differences in emission wavelength and excited-state lifetime. Upon photoexcitation, the bond length of Re-P and angle of P-Re-P are significantly changed in both complexes, while the phenyl groups are largely rotated by ~20º only in (3,3). We concluded that the instability from steric effects of phenyl groups and diimine leads to the smaller Stokes shift of the lowest excited triplet state (T<sub>1</sub>) in (3,3). The large structural change between the ground and excited states causes the longer lifetime of T<sub>1</sub> in (3,3).

2021 ◽  
Author(s):  
Yuushi Shimoda ◽  
Kiyoshi Miyata ◽  
Masataka Funaki ◽  
Tatsuki Morimoto ◽  
Shunsuke Nozawa ◽  
...  

We have explored the structural factors on the photophysical properties in two rhenium(I) diimine complexes in acetonitrile solution, cis,trans-[Re(dmb)(CO)<sub>2</sub>(PPh<sub>2</sub>Et)<sub>2</sub>]+ (Et(2,2)) and cis,trans-[Re(dmb)(CO)<sub>2</sub>(PPh<sub>3</sub>)<sub>2</sub>]+ ((3,3)) (dmb = 4,4'-dimethyl-2,2'-bipyridine, Ph = phenyl, Et = ethyl) using the combination method of time-resolved infrared spectroscopy, time-resolved extended X-ray absorption fine structure, and quantum chemical calculations. The difference between these complexes is the number of phenyl groups in the phosphine ligand, and this only indirectly affects the central Re(I). Despite this minor difference, the complexes exhibit large differences in emission wavelength and excited-state lifetime. Upon photoexcitation, the bond length of Re-P and angle of P-Re-P are significantly changed in both complexes, while the phenyl groups are largely rotated by ~20º only in (3,3). We concluded that the instability from steric effects of phenyl groups and diimine leads to the smaller Stokes shift of the lowest excited triplet state (T<sub>1</sub>) in (3,3). The large structural change between the ground and excited states causes the longer lifetime of T<sub>1</sub> in (3,3).


2019 ◽  
Vol 205 ◽  
pp. 05014 ◽  
Author(s):  
Roseanne J. Sension ◽  
Nicholas A. Miller ◽  
Aniruddha Deb ◽  
Roberto Alonso-Mori ◽  
James M. Glownia ◽  
...  

Polarized time-resolved X-ray absorption near edge structure (XANES) is used to characterize the sequential ballistic excited state dynamics of two B12 vitamers: cyanocobalamin and adenosylcobalamin. Excitation at 550 nm and 365 nm is used to resolve axial and equatorial contributions to the excited state dynamics.


Author(s):  
Matthew R. Ross ◽  
Benjamin E Van Kuiken ◽  
Matthew L. Strader ◽  
Hana Cho ◽  
Amy Cordones-Hahn ◽  
...  

2009 ◽  
Vol 80 (12) ◽  
Author(s):  
P. W. Hillyard ◽  
S. V. N. T. Kuchibhatla ◽  
T. E. Glover ◽  
M. P. Hertlein ◽  
N. Huse ◽  
...  

2016 ◽  
Vol 194 ◽  
pp. 117-145 ◽  
Author(s):  
Simon P. Neville ◽  
Vitali Averbukh ◽  
Serguei Patchkovskii ◽  
Marco Ruberti ◽  
Renjie Yun ◽  
...  

The excited state non-adiabatic dynamics of polyatomic molecules, leading to the coupling of structural and electronic dynamics, is a fundamentally important yet challenging problem for both experiment and theory. Ongoing developments in ultrafast extreme vacuum ultraviolet (XUV) and soft X-ray sources present new probes of coupled electronic-structural dynamics because of their novel and desirable characteristics. As one example, inner-shell spectroscopy offers localized, atom-specific probes of evolving electronic structure and bonding (via chemical shifts). In this work, we present the first on-the-fly ultrafast X-ray time-resolved absorption spectrum simulations of excited state wavepacket dynamics: photo-excited ethylene. This was achieved by coupling the ab initio multiple spawning (AIMS) method, employing on-the-fly dynamics simulations, with high-level algebraic diagrammatic construction (ADC) X-ray absorption cross-section calculations. Using the excited state dynamics of ethylene as a test case, we assessed the ability of X-ray absorption spectroscopy to project out the electronic character of complex wavepacket dynamics, and evaluated the sensitivity of the calculated spectra to large amplitude nuclear motion. In particular, we demonstrate the pronounced sensitivity of the pre-edge region of the X-ray absorption spectrum to the electronic and structural evolution of the excited-state wavepacket. We conclude that ultrafast time-resolved X-ray absorption spectroscopy may become a powerful tool in the interrogation of excited state non-adiabatic molecular dynamics.


2021 ◽  
Author(s):  
Yuushi Shimoda ◽  
Masaki Saigo ◽  
Tomohiro Ryu ◽  
Takumi Ehara ◽  
Kiyoshi Miyata ◽  
...  

We have investigated the correlation between the photophysical properties and the excited-state detailed characteristics in a multiple-resonance-type thermally activated delayed fluorescence (TADF) molecule, DABNA-1, using time-resolved infrared vibrational spectroscopy. In comparison of the distinctive vibrational spectra in the fingerprint region, 1000 - 1700 cm<sup>-1</sup>, to the simulated spectra by density functional theory calculations, we found the best calculation condition. On the basis of the calculations, we determined the excited-state geometries and molecular orbitals of the lowest excited singlet (S<sub>1</sub>) and triplet (T<sub>1</sub>) states as well as the ground state (S<sub>0</sub>). We revealed that the similarity of the potential surfaces between T<sub>1</sub> and S<sub>0</sub> suppresses the nonradiative decay and causes the high fluorescence quantum yield via TADF process.


Author(s):  
Matthew Ross ◽  
Benjamin E. Van Kuiken ◽  
Mathew L. Strader ◽  
Amy Cordones-Hahn ◽  
Hana Cho ◽  
...  

2019 ◽  
Vol 123 (28) ◽  
pp. 6042-6048 ◽  
Author(s):  
Lindsay B. Michocki ◽  
Nicholas A. Miller ◽  
Roberto Alonso-Mori ◽  
Alexander Britz ◽  
Aniruddha Deb ◽  
...  

2021 ◽  
Author(s):  
Yuushi Shimoda ◽  
Masaki Saigo ◽  
Tomohiro Ryu ◽  
Takumi Ehara ◽  
Kiyoshi Miyata ◽  
...  

We have investigated the correlation between the photophysical properties and the excited-state detailed characteristics in a multiple-resonance-type thermally activated delayed fluorescence (TADF) molecule, DABNA-1, using time-resolved infrared vibrational spectroscopy. In comparison of the distinctive vibrational spectra in the fingerprint region, 1000 - 1700 cm<sup>-1</sup>, to the simulated spectra by density functional theory calculations, we found the best calculation condition. On the basis of the calculations, we determined the excited-state geometries and molecular orbitals of the lowest excited singlet (S<sub>1</sub>) and triplet (T<sub>1</sub>) states as well as the ground state (S<sub>0</sub>). We revealed that the similarity of the potential surfaces between T<sub>1</sub> and S<sub>0</sub> suppresses the nonradiative decay and causes the high fluorescence quantum yield via TADF process.


Sign in / Sign up

Export Citation Format

Share Document