scholarly journals Operando Monitoring the Insulator-Metal Transition of LiCoO2

Author(s):  
Eibar Flores ◽  
Nataliia Mozhzhukhina ◽  
Ulrich Aschauer ◽  
Erik Berg

LiCoO<sub>2</sub> (LCO) is one of the most-widely used cathode active materials for Li-ion batteries. Even though the material undergoes an electronic two-phase transition upon Li-ion cell charging, LCO exhibits competitive performance in terms of rate capability. Herein the insulator-metal transition of LCO is investigated by <i>operando</i> Raman spectroscopy complemented with DFT calculations and a newly-developed sampling volume model. We confirm the presence of a Mott insulator α-phase at dilute Li-vacancy concentrations (x > 0.87) that transforms into a metallic β-phase at x < 0.75. In addition, we find that the charge-discharge intensity trends of LCO Raman-active bands exhibit a characteristic hysteresis, which, unexpectedly, narrows at higher cycling rates. When comparing these trends to a newly-developed numerical model of laser penetration into a spatially-heterogeneous particle we provide compelling evidence that the insulator-metal transition of LCO follows a two-phase route at very low cycling rates, which is suppressed in favor of a solid-solution route at rates above 10 mA/g<sub>LCO</sub> (~C/10). The observations explain why LCO exhibits competitive rate capabilities despite being observed to undergo an intuitively slow two-phase transition route: a kinetically faster solid-solution transition route becomes available when the active material is cycled at rates >C/10. <i>Operando</i> Raman spectroscopy combined with sample volume modelling and DFT calculations is shown to provide unique insights into fundamental processes governing the performance of state-of-the-art cathode materials for Li-ion batteries.

2021 ◽  
Author(s):  
Eibar Flores ◽  
Nataliia Mozhzhukhina ◽  
Ulrich Aschauer ◽  
Erik Berg

LiCoO<sub>2</sub> (LCO) is one of the most-widely used cathode active materials for Li-ion batteries. Even though the material undergoes an electronic two-phase transition upon Li-ion cell charging, LCO exhibits competitive performance in terms of rate capability. Herein the insulator-metal transition of LCO is investigated by <i>operando</i> Raman spectroscopy complemented with DFT calculations and a newly-developed sampling volume model. We confirm the presence of a Mott insulator α-phase at dilute Li-vacancy concentrations (x > 0.87) that transforms into a metallic β-phase at x < 0.75. In addition, we find that the charge-discharge intensity trends of LCO Raman-active bands exhibit a characteristic hysteresis, which, unexpectedly, narrows at higher cycling rates. When comparing these trends to a newly-developed numerical model of laser penetration into a spatially-heterogeneous particle we provide compelling evidence that the insulator-metal transition of LCO follows a two-phase route at very low cycling rates, which is suppressed in favor of a solid-solution route at rates above 10 mA/g<sub>LCO</sub> (~C/10). The observations explain why LCO exhibits competitive rate capabilities despite being observed to undergo an intuitively slow two-phase transition route: a kinetically faster solid-solution transition route becomes available when the active material is cycled at rates >C/10. <i>Operando</i> Raman spectroscopy combined with sample volume modelling and DFT calculations is shown to provide unique insights into fundamental processes governing the performance of state-of-the-art cathode materials for Li-ion batteries.


2019 ◽  
Vol 441 ◽  
pp. 227165 ◽  
Author(s):  
Gaël Coquil ◽  
Bernard Fraisse ◽  
Stéphane Biscaglia ◽  
David Aymé-Perrot ◽  
Moulay T. Sougrati ◽  
...  

Nano LIFE ◽  
2014 ◽  
Vol 04 (04) ◽  
pp. 1441015 ◽  
Author(s):  
Linlin Wang ◽  
Daoli Zhao ◽  
Min Zhang ◽  
Caihua Wang ◽  
Kaibin Tang ◽  
...  

Zn 0.5 Co 0.5 O solid solution materials have been extensively studied for possible spintronic applications, however, there are only a few reports using Zn 0.5 Co 0.5 O nanostructures for energy storage. Here, we report the preparation of Zn 0.5 Co 0.5 O nanoparticles with the average particle size 10 nm and their application as anode material for rechargeable Li -ion batteries (LIBs). Electrochemical measurements demonstrate that the Zn 0.5 Co 0.5 O solid solution nanoparticles deliver a stable reversible capacity of 309 mA h g-1 up to 250 cycles at 1 C rate. These results show higher-rate capability and better cycle durability compared with those of the reported ZnO or ZnO -based anodes.


2021 ◽  
Vol 9 (14) ◽  
pp. 9337-9346
Author(s):  
Erhong Song ◽  
Yifan Hu ◽  
Ruguang Ma ◽  
Yining Li ◽  
Xiaolin Zhao ◽  
...  

Li-rich layered cathodes based on Li2MnO3 have exhibited extraordinary promise to satisfy the rapidly increasing demand for high-energy density Li-ion batteries.


2021 ◽  
Vol 35 (5) ◽  
pp. 4570-4576
Author(s):  
Najeeb ur Rehman Lashari ◽  
Mingshu Zhao ◽  
Qingyang Zheng ◽  
Xinhai He ◽  
Irfan Ahmed ◽  
...  

Author(s):  
Chenbo Zhu ◽  
Chenghao Fan ◽  
Emiliano Cortes ◽  
Wei Xie

We report on the mechanism of rhodamine B (RhB) acting as an electrolyte additive in Li/graphite cells. We show that cycle performance and rate capability of graphite is enhanced in...


2021 ◽  
Vol 9 (11) ◽  
pp. 7018-7024
Author(s):  
Takahiro Yoshinari ◽  
Datong Zhang ◽  
Kentaro Yamamoto ◽  
Yuya Kitaguchi ◽  
Aika Ochi ◽  
...  

A Cu–Au cathode material for all-solid-state fluoride-ion batteries with high rate-capability was designed as new concepts for electrochemical energy storage to handle the physicochemical energy density limit that Li-ion batteries are approaching.


Sign in / Sign up

Export Citation Format

Share Document