insulator metal transition
Recently Published Documents


TOTAL DOCUMENTS

549
(FIVE YEARS 85)

H-INDEX

52
(FIVE YEARS 7)

2021 ◽  
Author(s):  
Xiaoling Zang ◽  
Yuqian Jiang ◽  
Yuqiao Chai ◽  
Fengwang Li ◽  
Junhui Ji ◽  
...  

Abstract Conjugated polymers (CPs), organic macromolecules with linear backbone of alternating C–C and C=C bonds, possess unique semiconductive properties, providing new opportunities for organic electronics, photonics, information, and energy devices. Seeking the metallic or metallic-like, even superconducting properties beyond semiconductivity in CPs is always one of the ultimate goals in polymer science and condensed matter. Only two metallic and semi-metallic transport cases – aniline-derived polyaniline (PANI) and thiophene-derived poly(3,4-ethylenedioxythiophene) (PEDOT) – have been reported since the development of CPs for four decades. Controllable synthesis is a key challenge in discovering more cases. Here we report the metallic-like transport behavior of another CP, polypyrrole (PPy). We observe that the transport behavior of PPy changes from semiconductor to insulator-metal transition, and gradually realizes metallic-like performance when the crystalline degree increases. Using a generalized Einstein relation model, we rationalized the mechanism behind the observation. The metallic-like transport in PPy demonstrates electron strong correlation and phonon-electron interaction in soft condensation matter, and may find practical applications of CPs in electrics and spintronics.


Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3409
Author(s):  
Xueguang Lu ◽  
Bowen Dong ◽  
Hongfu Zhu ◽  
Qiwu Shi ◽  
Lu Tang ◽  
...  

Vanadium oxide (VO2), as one of the classical strongly correlated oxides with a reversible and sharp insulator-metal transition (IMT), enables many applications in dynamic terahertz (THz) wave control. Recently, due to the inherent phase transition hysteresis feature, VO2 has shown favorable application prospects in memory-related devices once combined with metamaterials or metasurfaces. However, to date, VO2-based memory meta-devices are usually in a single-channel read/write mode, which limits their storage capacity and speed. In this paper, we propose a reconfigurable meta-memory based on VO2, which favors a two-channel read/write mode. Our design consists of a pair of large and small split-ring resonators, and the corresponding VO2 patterns are embedded in the gap locations. By controlling the external power supply, the two operation bands can be controlled independently to achieve at least four amplitude states, including “00”, “01”, “10”, and “11”, which results in a two-channel storage function. In addition, our research may provide prospective applications in fields such as THz switching, photon storage, and THz communication systems in the future.


2021 ◽  
Vol 90 (12) ◽  
Author(s):  
Takahiro Matsuoka ◽  
Amanda Haglund ◽  
Rui Xue ◽  
Jesse S. Smith ◽  
Maik Lang ◽  
...  

2021 ◽  
Vol 118 (37) ◽  
pp. e2105895118
Author(s):  
Shaobo Cheng ◽  
Min-Han Lee ◽  
Richard Tran ◽  
Yin Shi ◽  
Xing Li ◽  
...  

Vanadium dioxide (VO2), which exhibits a near-room-temperature insulator–metal transition, has great potential in applications of neuromorphic computing devices. Although its volatile switching property, which could emulate neuron spiking, has been studied widely, nanoscale studies of the structural stochasticity across the phase transition are still lacking. In this study, using in situ transmission electron microscopy and ex situ resistive switching measurement, we successfully characterized the structural phase transition between monoclinic and rutile VO2 at local areas in planar VO2/TiO2 device configuration under external biasing. After each resistive switching, different VO2 monoclinic crystal orientations are observed, forming different equilibrium states. We have evaluated a statistical cycle-to-cycle variation, demonstrated a stochastic nature of the volatile resistive switching, and presented an approach to study in-plane structural anisotropy. Our microscopic studies move a big step forward toward understanding the volatile switching mechanisms and the related applications of VO2 as the key material of neuromorphic computing.


Crystals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 817
Author(s):  
Yohei Saito ◽  
Anja Löhle ◽  
Atsushi Kawamoto ◽  
Andrej Pustogow ◽  
Martin Dressel

The quantum spin liquid candidate κ-(BEDT-TTF)2Cu2(CN)3 has been established as the prime example of a genuine Mott insulator that can be tuned across the first-order insulator–metal transition either by chemical substitution or by physical pressure. Here, we explore the superconducting state that occurs at low temperatures, when both methods are combined, i.e., when κ-[(BEDT-TTF)1−x(BEDT-STF)x]2Cu2(CN)3 is pressurized. We discovered superconductivity for partial BEDT-STF substitution with x = 0.10–0.12 even at ambient pressure, i.e., a superconducting state is realized in the range between a metal and a Mott insulator without magnetic order. Furthermore, we observed the formation of a superconducting dome by pressurizing the substituted crystals; we assigned this novel behavior to disorder emanating from chemical tuning.


2021 ◽  
Vol 2 (3) ◽  
pp. 284-298
Author(s):  
Yuliia Shemerliuk ◽  
Yong Hui Zhou ◽  
Zhao Rong Yang ◽  
Gang Cao ◽  
Anja U.B. Wolter ◽  
...  

We report an optimized chemical vapor transport method to grow single crystals of (Mn1−xNix)2P2S6 where x = 0, 0.3, 0.5, 0.7, and 1. Single crystals up to 4 mm × 3 mm × 200 μm were obtained by this method. As-grown crystals are characterized by means of scanning electron microscopy and powder X-ray diffraction measurements. The structural characterization shows that all crystals crystallize in monoclinic symmetry with the space group C2/m (No. 12). We have further investigated the magnetic properties of this series of single crystals. The magnetic measurements of the all as-grown single crystals show long-range antiferromagnetic order along all principal crystallographic axes. Overall, the Néel temperature TN is non-monotonous; with increasing Ni2+ doping, the temperature of the antiferromagnetic phase transition first decreases from 80 K for pristine Mn2P2S6 (x = 0) up to x = 0.5 and then increases again to 155 K for pure Ni2P2S6 (x = 1). The magnetic anisotropy switches from out-of-plane to in-plane as a function of composition in (Mn1−xNix)2P2S6 series. Transport studies under hydrostatic pressure on the parent compound Mn2P2S6 evidence an insulator-metal transition at an applied critical pressure of ~22 GPa.


2021 ◽  
Vol 64 (8) ◽  
Author(s):  
Shuang Chen ◽  
Jiali Zhao ◽  
Qiao Jin ◽  
Shan Lin ◽  
Shengru Chen ◽  
...  

2021 ◽  
Vol 6 (1) ◽  
Author(s):  
A. S. McLeod ◽  
A. Wieteska ◽  
G. Chiriaco ◽  
B. Foutty ◽  
Y. Wang ◽  
...  

AbstractThe 4d transition metal perovskites Can+1RunO3n+1 have attracted interest for their strongly interacting electronic phases showing pronounced sensitivity to controllable stimuli like strain, temperature, and even electrical current. Through multi-messenger low-temperature nano-imaging, we reveal a spontaneous striped texture of coexisting insulating and metallic domains in single crystals of the bilayer ruthenate Ca3(TixRu1-x)2O7 across its first-order Mott transition at $$T \approx 95$$ T ≈ 95 K. We image on-demand anisotropic nucleation and growth of these domains under in situ applied uniaxial strain rationalized through control of a spontaneous Jahn-Teller distortion. Our scanning nano-susceptibility imaging resolves the detailed susceptibility of coexisting phases to strain and temperature at the transition threshold. Comparing these nano-imaging results to bulk-sensitive elastoresistance measurements, we uncover an emergent “domain susceptibility” sensitive to both the volumetric phase fractions and elasticity of the self-organized domain lattice. Our combined susceptibility probes afford nano-scale insights into strain-mediated control over the insulator-metal transition in 4d transition metal oxides.


Sign in / Sign up

Export Citation Format

Share Document