scholarly journals A Direct-to-Biology High-Throughput Chemistry Approach to Reactive Fragment Screening

Author(s):  
Ross P. Thomas ◽  
Rachel E. Heap ◽  
Francesca Zappacosta ◽  
Emma K. Grant ◽  
Peter Pogany ◽  
...  

<p>Methods for rapid identification of chemical tools are essential for the validation of emerging targets and to provide medicinal chemistry starting points for the development of <a>new medicines. Here, we report a screening platform that combines ‘direct-to-biology’ high-throughput chemistry (D2B-HTC) with photoreactive covalent fragments. The platform enabled the rapid synthesis of >1000 PhotoAffinity Bits (HTC-PhABits) in 384-well plates. Screening the HTC-PhABit library with </a>carbonic anhydrase I (CAI) afforded 7 hits (0.7% hit rate), which were found to covalently crosslink in the Zn<sup>2+</sup> binding pocket. A powerful advantage of the D2B-HTC screening platform is the ability to rapidly perform iterative design-make-test cycles, accelerating the development and optimisation of chemical tools and medicinal chemistry starting points with little investment of resource.</p>

2021 ◽  
Author(s):  
Ross P. Thomas ◽  
Rachel E. Heap ◽  
Francesca Zappacosta ◽  
Emma K. Grant ◽  
Peter Pogany ◽  
...  

<p>Methods for rapid identification of chemical tools are essential for the validation of emerging targets and to provide medicinal chemistry starting points for the development of <a>new medicines. Here, we report a screening platform that combines ‘direct-to-biology’ high-throughput chemistry (D2B-HTC) with photoreactive covalent fragments. The platform enabled the rapid synthesis of >1000 PhotoAffinity Bits (HTC-PhABits) in 384-well plates. Screening the HTC-PhABit library with </a>carbonic anhydrase I (CAI) afforded 7 hits (0.7% hit rate), which were found to covalently crosslink in the Zn<sup>2+</sup> binding pocket. A powerful advantage of the D2B-HTC screening platform is the ability to rapidly perform iterative design-make-test cycles, accelerating the development and optimisation of chemical tools and medicinal chemistry starting points with little investment of resource.</p>


2021 ◽  
Author(s):  
Ross Peter Thomas ◽  
Rachel E. Heap ◽  
Francesca Zappacosta ◽  
Emma K. Grant ◽  
Peter Pogány ◽  
...  

Methods for rapid identification of chemical tools are essential for the validation of emerging targets and to provide medicinal chemistry starting points for the development of new medicines. Here, we...


2021 ◽  
Author(s):  
Claudine Herlan ◽  
Dominik Feser ◽  
Ute Schepers ◽  
Stefan Bräse

Combinatorial chemistry allows for the rapid synthesis of large compound libraries for high throughput screenings in biology, medicinal chemistry, or materials science. Especially compounds from a highly modular design are...


2021 ◽  
Author(s):  
Jong-Won Lee ◽  
Hyeongmin Seo ◽  
Caleb Young ◽  
Cong T Trinh

Alcohol acyltransferases (AATs) enables microbial biosynthesis of a large space of esters by condensing an alcohol and an acyl CoA. However, substrate promiscuity of AATs prevents microbial biosynthesis of designer esters with high selectivity. Here, we developed a high-throughput microbial screening platform that facilitates rapid identification of AATs for designer ester biosynthesis. First, we established a microplate-based culturing technique with in situ fermentation and extraction of esters. We validated its capability in rapid profiling of the alcohol substrate specificity of 20 chloramphenicol acetyltransferase variants derived from Staphylococcus aureus (CATSa) for microbial biosynthesis of acetate esters with various exogeneous alcohol supply. By coupling the microplate-based culturing technique with a previously established colorimetric assay, we developed a high-throughput microbial screening platform for AATs. We demonstrated that this platform could not only confirm CATSa F97W with enhanced isobutyl acetate synthesis but also identify three ATF1Sc (P348M, P348A, and P348S) variants, derived from Saccharomyces cerevisiae' s AAT and engineered by model-guided protein design, for enhanced butyl acetate production. We anticipate the high-throughput microbial screening platform is a useful tool to identify novel AATs that have important roles in nature and industrial biocatalysis for designer bioester production.


2021 ◽  
Author(s):  
Andrew C Hunt ◽  
Bastian Vogeli ◽  
Weston K. Kightlinger ◽  
Danielle J. Yoesep ◽  
Antje Kruger ◽  
...  

Antibody discovery is bottlenecked by the individual expression and evaluation of antigen- specific hits. Here, we address this gap by developing an automated workflow combining cell-free DNA template generation, protein synthesis, and high-throughput binding measurements of antibody fragments in a process that takes hours rather than weeks. We apply this workflow to 119 published SARS-CoV-2 neutralizing antibodies and demonstrate rapid identification of the most potent antibody candidates.


2006 ◽  
Vol 11 (3) ◽  
pp. 236-246 ◽  
Author(s):  
Laurence H. Lamarcq ◽  
Bradley J. Scherer ◽  
Michael L. Phelan ◽  
Nikolai N. Kalnine ◽  
Yen H. Nguyen ◽  
...  

A method for high-throughput cloning and analysis of short hairpin RNAs (shRNAs) is described. Using this approach, 464 shRNAs against 116 different genes were screened for knockdown efficacy, enabling rapid identification of effective shRNAs against 74 genes. Statistical analysis of the effects of various criteria on the activity of the shRNAs confirmed that some of the rules thought to govern small interfering RNA (siRNA) activity also apply to shRNAs. These include moderate GC content, absence of internal hairpins, and asymmetric thermal stability. However, the authors did not find strong support for positionspecific rules. In addition, analysis of the data suggests that not all genes are equally susceptible to RNAinterference (RNAi).


2011 ◽  
Vol 22 (2) ◽  
pp. 67-74 ◽  
Author(s):  
Malgorzata Sudol ◽  
Jennifer L Fritz ◽  
Melissa Tran ◽  
Gavin P Robertson ◽  
Julie B Ealy ◽  
...  

Background: In addition to activities needed to catalyse integration, retroviral integrases exhibit non-specific endonuclease activity that is enhanced by certain small compounds, suggesting that integrase could be stimulated to damage viral DNA before integration occurs. Methods: A non-radioactive, plate-based, solution phase, fluorescence assay was used to screen a library of 50,080 drug-like chemicals for stimulation of non-specific DNA nicking by HIV-1 integrase. Results: A semi-automated workflow was established and primary hits were readily identified from a graphic output. Overall, 0.6% of the chemicals caused a large increase in fluorescence (the primary hit rate) without also having visible colour that could have artifactually caused this result. None of the potential stimulators from this moderate-size library, however, passed a secondary test that included an inactive integrase mutant that assessed whether the increased fluorescence depended on the endonuclease activity of integrase. Conclusions: This first attempt at identifying integrase stimulator compounds establishes the necessary logistics and workflow required. The results from this study should encourage larger scale high-throughput screening to advance the novel antiviral strategy of stimulating integrase to damage retroviral DNA.


ACS Nano ◽  
2021 ◽  
Author(s):  
Sneh M. Toprani ◽  
Dimitrios Bitounis ◽  
Qiansheng Huang ◽  
Nathalia Oliveira ◽  
Kee Woei Ng ◽  
...  

ACS Sensors ◽  
2020 ◽  
Author(s):  
Ke-Jia Wu ◽  
Chun Wu ◽  
Feng Chen ◽  
Sha-Sha Cheng ◽  
Dik-Lung Ma ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document