fragment screening
Recently Published Documents





Ashley E. Modell ◽  
Frank Marrone ◽  
Nihar R. Panigrahi ◽  
Yingkai Zhang ◽  
Paramjit S. Arora

2021 ◽  
Vol 12 (1) ◽  
Abhimanyu K. Singh ◽  
Sergio E. Martinez ◽  
Weijie Gu ◽  
Hoai Nguyen ◽  
Dominique Schols ◽  

AbstractHIV-1 reverse transcriptase (RT) slides over an RNA/DNA or dsDNA substrate while copying the viral RNA to a proviral DNA. We report a crystal structure of RT/dsDNA complex in which RT overstepped the primer 3’-end of a dsDNA substrate and created a transient P-pocket at the priming site. We performed a high-throughput screening of 300 drug-like fragments by X-ray crystallography that identifies two leads that bind the P-pocket, which is composed of structural elements from polymerase active site, primer grip, and template-primer that are resilient to drug-resistance mutations. Analogs of a fragment were synthesized, two of which show noticeable RT inhibition. An engineered RT/DNA aptamer complex could trap the transient P-pocket in solution, and structures of the RT/DNA complex were determined in the presence of an inhibitory fragment. A synthesized analog bound at P-pocket is further analyzed by single-particle cryo-EM. Identification of the P-pocket within HIV RT and the developed structure-based platform provide an opportunity for the design new types of polymerase inhibitors.

Small GTPases ◽  
2021 ◽  
pp. 1-14
Magali Mathieu ◽  
Valérie Steier ◽  
Florence Fassy ◽  
Cécile Delorme ◽  
David Papin ◽  

2021 ◽  
Muhammad Faheem ◽  
Napoleão Fonseca Valadares ◽  
José Brandão-Neto ◽  
Domenico Bellini ◽  
Patrick Collins ◽  

Several Schistosoma species cause Schistosomiasis, an endemic disease in 78 countries that is ranked second amongst the parasitic diseases in terms of its socioeconomic impact and human health importance. The drug recommended for treatment by the WHO is praziquantel (PZQ), but there are concerns associated with PZQ, such as the lack of information about its exact mechanism of action, its high price, its effectiveness – which is limited to the parasite’s adult form – and reports of resistance. The parasites lack the de novo purine pathway, rendering them dependent on the purine salvage pathway or host purine bases for nucleotide synthesis. Thus, the Schistosoma purine salvage pathway is an attractive target for the development of necessary and selective new drugs. In this study, the purine nucleotide phosphorylase II (PNP2), a new isoform of PNP1, was submitted to a high-throughput fragment-based hit discovery using a crystallographic screening strategy. PNP2 was crystallized and crystals were soaked with 827 fragments, a subset of the Maybridge 1000 library. X-ray diffraction data was collected and structures were solved. Out of 827-screened fragments we have obtained a total of 19 fragments that show binding to PNP2. 14 of these fragments bind to the active site of PNP2, while five were observed in three other sites. Here we present the first fragment screening against PNP2.

2021 ◽  
Vol 77 (9) ◽  
pp. 1168-1182 ◽  
Alexander Metz ◽  
Jan Wollenhaupt ◽  
Steffen Glöckner ◽  
Niki Messini ◽  
Simon Huber ◽  

In recent years, crystallographic fragment screening has matured into an almost routine experiment at several modern synchrotron sites. The hits of the screening experiment, i.e. small molecules or fragments binding to the target protein, are revealed along with their 3D structural information. Therefore, they can serve as useful starting points for further structure-based hit-to-lead development. However, the progression of fragment hits to tool compounds or even leads is often hampered by a lack of chemical feasibility. As an attractive alternative, compound analogs that embed the fragment hit structurally may be obtained from commercial catalogs. Here, a workflow is reported based on filtering and assessing such potential follow-up compounds by template docking. This means that the crystallographic binding pose was integrated into the docking calculations as a central starting parameter. Subsequently, the candidates are scored on their interactions within the binding pocket. In an initial proof-of-concept study using five starting fragments known to bind to the aspartic protease endothiapepsin, 28 follow-up compounds were selected using the designed workflow and their binding was assessed by crystallography. Ten of these compounds bound to the active site and five of them showed significantly increased affinity in isothermal titration calorimetry of up to single-digit micromolar affinity. Taken together, this strategy is capable of efficiently evolving the initial fragment hits without major synthesis efforts and with full control by X-ray crystallography.

Emma Scaletti ◽  
Franziska U. Huschmann ◽  
Uwe Mueller ◽  
Manfred S. Weiss ◽  
Norbert Sträter

AbstractHuman ecto-5-nucleotidase (CD73) is involved in purinergic signalling, which influences a diverse range of biological processes. CD73 hydrolyses AMP and is the major control point for the levels of extracellular adenosine. Inhibitors of CD73 thus block the immunosuppressive action of adenosine, a promising approach for cancer immunotherapy. Interestingly, ADP and ATP are competitive inhibitors of CD73, with the most potent small-molecule inhibitors to date being non-hydrolysable ADP analogues. While AMP is the major substrate of the enzyme, CD73 has been reported to hydrolyse other 5′-nucleoside monophosphates. Based on a fragment screening campaign at the BESSY II synchrotron, we present the binding modes of various deoxyribo- and ribonucleoside monophosphates and of four additional fragments binding to the nucleoside binding site of the open form of the enzyme. Kinetic analysis of monophosphate hydrolysis shows that ribonucleotide substrates are favoured over their deoxyribose equivalents with AMP being the best substrate. We characterised the initial step of AMP hydrolysis, the binding mode of AMP to the open conformation of CD73 and compared that to other monophosphate substrates. In addition, the inhibitory activity of various bisphosphonic acid derivatives of nucleoside diphosphates was determined. Although AMPCP remains the most potent inhibitor, replacement of the adenine base with other purines or with pyrimidines increases the Ki value only between twofold and sixfold. On the other hand, these nucleobases offer new opportunities to attach substituents for improved pharmacological properties.

2021 ◽  
Vol 12 (1) ◽  
Joseph A. Newman ◽  
Alice Douangamath ◽  
Setayesh Yadzani ◽  
Yuliana Yosaatmadja ◽  
Antony Aimon ◽  

AbstractThere is currently a lack of effective drugs to treat people infected with SARS-CoV-2, the cause of the global COVID-19 pandemic. The SARS-CoV-2 Non-structural protein 13 (NSP13) has been identified as a target for anti-virals due to its high sequence conservation and essential role in viral replication. Structural analysis reveals two “druggable” pockets on NSP13 that are among the most conserved sites in the entire SARS-CoV-2 proteome. Here we present crystal structures of SARS-CoV-2 NSP13 solved in the APO form and in the presence of both phosphate and a non-hydrolysable ATP analog. Comparisons of these structures reveal details of conformational changes that provide insights into the helicase mechanism and possible modes of inhibition. To identify starting points for drug development we have performed a crystallographic fragment screen against NSP13. The screen reveals 65 fragment hits across 52 datasets opening the way to structure guided development of novel antiviral agents.

Sign in / Sign up

Export Citation Format

Share Document