scholarly journals Magnetically Induced Ring-Current Strengths of Planar and Nonplanar Molecules: New Insights from the Pseudo-π Model

Author(s):  
Mesías Orozco-Ic ◽  
Maria Dimitrova ◽  
jorge barroso ◽  
Dage Sundholm ◽  
Gabriel Merino

<p>The π-contribution to the magnetically induced current densities, ring-current strengths, and induced magnetic fields of large planar molecules (as kekulene) and three-dimensional molecules (as [10]cyclophenacene and chiral toroidal nanotubes C<sub>2016 </sub>and C<sub>2196</sub>) have been computed using the pseudo-π model with the gauge-including magnetically induced currents method. The magnetic response analysis shows that π-electrons are the main actors of the electron delocalization in carbon systems regardless of their size, suggesting that the π- component of the ring-current strengths can be used for assessing the aromatic character of this kind of molecules. Computations using the pseudo-π model yield current densities and induced magnetic fields that are not contaminated by contributions from core and σ-electrons allowing investigations of large molecular structures as polycyclic aromatic hydrocarbons and cylindrical or toroidal carbon nanotubes.</p>

2021 ◽  
Author(s):  
Mesías Orozco-Ic ◽  
Maria Dimitrova ◽  
jorge barroso ◽  
Dage Sundholm ◽  
Gabriel Merino

<p>The π-contribution to the magnetically induced current densities, ring-current strengths, and induced magnetic fields of large planar molecules (as kekulene) and three-dimensional molecules (as [10]cyclophenacene and chiral toroidal nanotubes C<sub>2016 </sub>and C<sub>2196</sub>) have been computed using the pseudo-π model with the gauge-including magnetically induced currents method. The magnetic response analysis shows that π-electrons are the main actors of the electron delocalization in carbon systems regardless of their size, suggesting that the π- component of the ring-current strengths can be used for assessing the aromatic character of this kind of molecules. Computations using the pseudo-π model yield current densities and induced magnetic fields that are not contaminated by contributions from core and σ-electrons allowing investigations of large molecular structures as polycyclic aromatic hydrocarbons and cylindrical or toroidal carbon nanotubes.</p>


2021 ◽  
Author(s):  
Henrik Ottosson ◽  
Ouissam El Bakouri ◽  
Dariusz Szczepanik ◽  
Kjell Jorner ◽  
Rabia Ayub ◽  
...  

Recently, several fully pi-conjugated macrocycles with strongly puckered or cage-type structures have been synthesized and found to exhibit aromatic character according to both experiments and computations. Herein, we examine their electronic structures and put them in relation to truly 3D-aromatic molecules (e.g., closo-boranes and certain charged fullerenes) as well as 2D-aromatic polycyclic aromatic hydrocarbons. We use qualitative theory combined with quantum chemical calculations, and find that the macrocycles explored thus far should be described as 2D-aromatic with three-dimensional structures (abbr. 2D-aromatic-in-3D) instead of truly 3D-aromatic. Besides fulfilling the 6n + 2 pi-electron rule, 3D-aromatic molecules with highly symmetric structures (e.g., Td and Oh) have a number of molecular orbital (MO) levels that are (at least) triply degenerate. At lower symmetries, the triple (or higher) orbital degeneracies should be kept in approximate sense. This last criterion is not fulfilled by macrocyclic cage molecules that are 2D-aromatic-in-3D. Their aromaticity results from a fulfillment of Hückel’s 4n + 2 rule for each individual macrocyclic path, yet, their pi-electron counts are coincidentally 6n + 2 numbers for macrocycles with three tethers of equal lengths. We instead link the 3D-macrocyclic molecules explored earlier to naphthalene, motivating their description as 2D-aromatics albeit with 3D structures. It is notable that macrocyclic cages which are 2D-aromatic-in-3D can be aromatic also when the tethers are of different lengths, i.e., when their pi-electron counts differ from 6n + 2. Finally, we identify tetrahedral and cubic pi-conjugated molecules that fulfill the 6n + 2 rule and which exhibit significant electron delocalization. Yet, their properties are similar to those of analogous compounds with electron counts that differ from 6n + 2. Thus, despite that these tetrahedral and cubic molecules show substantial pi-electron delocalization they should not be classified as true 3D-aromatics.


2020 ◽  
Author(s):  
Junxia Ren ◽  
Yaozu Liu ◽  
Xin Zhu ◽  
Yangyang Pan ◽  
Yujie Wang ◽  
...  

<p><a></a><a></a><a></a><a></a><a></a><a></a><a></a><a>The development of highly-sensitive recognition of </a><a></a><a></a><a></a><a></a><a>hazardous </a>chemicals, such as volatile organic compounds (VOCs) and polycyclic aromatic hydrocarbons (PAHs), is of significant importance because of their widespread social concerns related to environment and human health. Here, we report a three-dimensional (3D) covalent organic framework (COF, termed JUC-555) bearing tetraphenylethylene (TPE) side chains as an aggregation-induced emission (AIE) fluorescence probe for sensitive molecular recognition.<a></a><a> </a>Due to the rotational restriction of TPE rotors in highly interpenetrated framework after inclusion of dimethylformamide (DMF), JUC-555 shows impressive AIE-based strong fluorescence. Meanwhile, owing to the large pore size (11.4 Å) and suitable intermolecular distance of aligned TPE (7.2 Å) in JUC-555, the obtained material demonstrates an excellent performance in the molecular recognition of hazardous chemicals, e.g., nitroaromatic explosives, PAHs, and even thiophene compounds, via a fluorescent quenching mechanism. The quenching constant (<i>K</i><sub>SV</sub>) is two orders of magnitude better than those of other fluorescence-based porous materials reported to date. This research thus opens 3D functionalized COFs as a promising identification tool for environmentally hazardous substances.</p>


Solar Physics ◽  
2021 ◽  
Vol 296 (8) ◽  
Author(s):  
J. Threlfall ◽  
J. Reid ◽  
A. W. Hood

AbstractMagnetohydrodynamic (MHD) instabilities allow energy to be released from stressed magnetic fields, commonly modelled in cylindrical flux tubes linking parallel planes, but, more recently, also in curved arcades containing flux tubes with both footpoints in the same photospheric plane. Uncurved cylindrical flux tubes containing multiple individual threads have been shown to be capable of sustaining an MHD avalanche, whereby a single unstable thread can destabilise many. We examine the properties of multi-threaded coronal loops, wherein each thread is created by photospheric driving in a realistic, curved coronal arcade structure (with both footpoints of each thread in the same plane). We use three-dimensional MHD simulations to study the evolution of single- and multi-threaded coronal loops, which become unstable and reconnect, while varying the driving velocity of individual threads. Experiments containing a single thread destabilise in a manner indicative of an ideal MHD instability and consistent with previous examples in the literature. The introduction of additional threads modifies this picture, with aspects of the model geometry and relative driving speeds of individual threads affecting the ability of any thread to destabilise others. In both single- and multi-threaded cases, continuous driving of the remnants of disrupted threads produces secondary, aperiodic bursts of energetic release.


Author(s):  
Luo Guangyu ◽  
Sajjad Hussain ◽  
Asma Khalid ◽  
Muhammad Ishtiaq ◽  
Muhammad Kamran Siddiqui ◽  
...  

2017 ◽  
Vol 31 (5) ◽  
pp. 539-548
Author(s):  
Ping Wang ◽  
Ning-chuan Zhang ◽  
Shuai Yuan ◽  
Wei-bin Chen

2005 ◽  
Vol 109 (28) ◽  
pp. 13445-13450 ◽  
Author(s):  
Wenyong Duan ◽  
Shu Kitamura ◽  
Ichiro Uechi ◽  
Akio Katsuki ◽  
Yoshifumi Tanimoto

Sign in / Sign up

Export Citation Format

Share Document