model geometry
Recently Published Documents


TOTAL DOCUMENTS

135
(FIVE YEARS 33)

H-INDEX

15
(FIVE YEARS 2)

2022 ◽  
Author(s):  
Kuang-Ying Ting ◽  
Nicolas Mavriplis ◽  
Reza Soltani ◽  
Chester P. Nelson ◽  
Eli Livne
Keyword(s):  

MAUSAM ◽  
2021 ◽  
Vol 49 (3) ◽  
pp. 345-360
Author(s):  
S. K. BEHERA ◽  
P. S. SALVEKAR

A simple wind driven ocean circulation model with one active layer is used to simulate the coastal circulation around India. The close agreement of numerical results to that of the observed fields ind1cate the influence of wind on the coastal circulation. The northward currents along the west coast of India during winter months are dominated by remote forcing from Bay of Bengal; however the southward currents during summer months are less influenced by the remote forcing. The coastaly trapped Kelvin waves which give rise to the remote forcing response are found to be produced by the annual cycle in the local wind of the Bay of Bengal. Equatorial waves do not provide the correct phase of west coast circulation. The island chains of Maldive and Laccadive do not affect the model circulation significantly. But the exclusion of Sri Lanka from the model geometry significantly alters the circulation of southwestern Bay of Bengal during summer months. Some of these findings are already shown by sophisticated multilayer models, e.g., McCreary et al. 1993. However, some of these results are again reproduced here in order to highlight the significance of such simple model and hence the simple model is used for detail study.


2021 ◽  
Vol 7 (12) ◽  
pp. 271
Author(s):  
Emre Baspinar

We present a novel cortically-inspired image completion algorithm. It uses five-dimensional sub-Riemannian cortical geometry, modeling the orientation, spatial frequency and phase-selective behavior of the cells in the visual cortex. The algorithm extracts the orientation, frequency and phase information existing in a given two-dimensional corrupted input image via a Gabor transform and represents those values in terms of cortical cell output responses in the model geometry. Then, it performs completion via a diffusion concentrated in a neighborhood along the neural connections within the model geometry. The diffusion models the activity propagation integrating orientation, frequency and phase features along the neural connections. Finally, the algorithm transforms the diffused and completed output responses back to the two-dimensional image plane.


2021 ◽  
Vol 95 (12) ◽  
Author(s):  
A. Rovira-Garcia ◽  
C. C. Timoté ◽  
J. M. Juan ◽  
J. Sanz ◽  
G. González-Casado ◽  
...  

AbstractThe Galileo High Accuracy Service (HAS) is a new capability of the European Global Navigation Satellite System that is currently under development. The Galileo HAS will start providing satellite orbit and clock corrections (i.e. non-dispersive effects) and soon it will also correct dispersive effects such as inter-frequency biases and, in its full capability, ionospheric delay. We analyse here an ionospheric correction system based on the fast precise point positioning (Fast-PPP) and its potential application to the Galileo HAS. The aim of this contribution is to present some recent upgrades to the Fast-PPP model, with the emphasis on the model geometry and the data used. The results show the benefits of integer ambiguity resolution to obtain unambiguous carrier phase measurements as input to compute the Fast-PPP model. Seven permanent stations are used to assess the errors of the Fast-PPP ionospheric corrections, with baseline distances ranging from 100 to 1000 km from the reference receivers used to compute the Fast-PPP corrections. The 99% of the GPS and Galileo errors in well-sounded areas and in mid-latitude stations are below one total electron content unit. In addition, large errors are bounded by the error prediction of the Fast-PPP model, in the form of the variance of the estimation of the ionospheric corrections. Therefore, we conclude that Fast-PPP is able to provide ionospheric corrections with the required ionospheric accuracy, and realistic confidence bounds, for the Galileo HAS.


2021 ◽  
Author(s):  
Oksana Vasilievna Kokareva ◽  
Yana Andreevna Miryasova ◽  
Tamara Aleksandrovna Alekseeva

Abstract With the advent of the equipment for full well logging suite in the horizontal wells, it became possible to evaluate the reservoir's quantitative parameters. However, the original curves are mainly used for this purpose, which leads to significant errors, in particular due to the significant influence of nearby reservoirs on the tools readings in the penetrated deposits. There is a need to discuss the current issues of interpretation in directional, horizontal and multi-lateral wells with the experts. 3DP module in the downhole software platform* allows to evaluate the overall influence of geometric effects, as well as to adjust logging curves for the influence of several reservoirs on the logging tools responses, which are not still taken into account by conventional methods when processing. The modeled density image is especially useful for confirming the model geometry, updating the local dip angle, and identifying areas, where additional features, such as thin layers, are to be added. The accounting for density and neutron porosity for layers in the petrophysical analysis increases the efficiency of calculating clay volume and porosity, which affects the saturation. The authors also proposed a methodology for assessing share of sand component based on RHOB image. Further accounting of NTG, for the correct assessment of the reservoir properties in a heterogeneous reservoir, followed by the data accounting in the geological model. The results obtained in the course of the work allowed to apply the spatial interpretation of horizontal well in geological modeling, as well as to improve the interpretation algorithm.


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4894
Author(s):  
Jakub Janus ◽  
Jerzy Krawczyk

Research work on the air flow in mine workings frequently utilises computer techniques in the form of numeric simulations. However, it is very often necessary to apply simplifications when building a geometrical model. The assumption of constant model geometry on its entire length is one of the most frequent simplifications. This results in a substantial shortening of the geometrical model building process, and a concomitant shortening of the time of numerical computations; however, it is not known to what extent such simplifications worsen the accuracy of simulation results. The paper presents a new methodology that enables precise reproduction of the studied mine gallery and the obtaining of a satisfactory match between simulation results and in-situ measurements. It utilises the processing of data from laser scanning of a mine gallery, simultaneous multi-point measurements of the velocity field at selected gallery cross-sections, unique for mine conditions, and the SAS turbulence model, recently introduced to engineering analyses of flow issues.


Solar Physics ◽  
2021 ◽  
Vol 296 (8) ◽  
Author(s):  
J. Threlfall ◽  
J. Reid ◽  
A. W. Hood

AbstractMagnetohydrodynamic (MHD) instabilities allow energy to be released from stressed magnetic fields, commonly modelled in cylindrical flux tubes linking parallel planes, but, more recently, also in curved arcades containing flux tubes with both footpoints in the same photospheric plane. Uncurved cylindrical flux tubes containing multiple individual threads have been shown to be capable of sustaining an MHD avalanche, whereby a single unstable thread can destabilise many. We examine the properties of multi-threaded coronal loops, wherein each thread is created by photospheric driving in a realistic, curved coronal arcade structure (with both footpoints of each thread in the same plane). We use three-dimensional MHD simulations to study the evolution of single- and multi-threaded coronal loops, which become unstable and reconnect, while varying the driving velocity of individual threads. Experiments containing a single thread destabilise in a manner indicative of an ideal MHD instability and consistent with previous examples in the literature. The introduction of additional threads modifies this picture, with aspects of the model geometry and relative driving speeds of individual threads affecting the ability of any thread to destabilise others. In both single- and multi-threaded cases, continuous driving of the remnants of disrupted threads produces secondary, aperiodic bursts of energetic release.


2021 ◽  
Author(s):  
Johannes Oerlemans ◽  
Jack Kohler ◽  
Adrian Luckman

Abstract. Tunabreen is a 26-km long tidewater glacier. It is the most frequently surging glacier in Svalbard, with four documented surges in the past hundred years. We have modelled the evolution of this glacier with a Minimal Glacier Model (MGM), in which ice mechanics, calving and surging are parameterized. The model geometry consists of a flow band to which three tributaries supply mass. The calving rate is set to the mean observed value for the period 2012–2019, and kept constant. For the past 120 years, a smooth Equilibrium Line Altitude (ELA) history is reconstructed by finding the best possible match between observed and simulated glacier length. There is a modest correlation between this ELA history and meteorological observations from Longyearbyen. The simulated glacier retreat is in good agreement with observations. Runs with and without surging show that the effect of surging on the long term glacier evolution is limited. Due to the low surface slope and associated strong height -mass balance feedback, Tunabreen is very sensitive to changes in ELA. For a constant future ELA equal to the reconstructed value for 2020, the glacier front will retreat by 8 km during the coming hundred years. For an increase of the ELA of 2 m per year, the retreat is projected to be 13 km and Tunabreen becomes a land-based glacier around 2100. The calving rate is an important parameter: increasing its value by 50 % has about the same effect as a 50 m increase in the ELA, the corresponding equilibrium glacier length being 18 km (as compared to 25.8 km in the reference state). Response times vary from 150 to 400 years, depending on the forcing and on the state of the glacier (tidewater or land-based).


Author(s):  
Amiya Abhash ◽  
Ravi P. Tripathi ◽  
K. K. Pandey

Abstract Piano key weirs are being increasingly used for better flood passage downstream, both as a new structure or on top of hydraulic structures like a dam, to increase their discharging capacity as well as reservoir storage. Much research has been done on rectangular plan-form while other plan-forms warrants attention. The present study focuses on two different plan geometries of PKW, i.e., rectangular (RPKW) and trapezoidal with angle α equal to 9 degrees (TPKW9) for their head discharge relation in a wide channel of 0.984 m width under free-flow condition. Since the role of CFD is increasingly becoming prominent in present times, a numerical study using ANSYS-FLUENT was also carried out to ascertain its relevance in predicting flows around complex structures like PKW. Further, the tailgate was closed to render the PKW's outlet from partial to fully submerged conditions. The effect of these submerged outlets was studied for any changes in the discharging capacity of the PKW. The study shows RPKW to be hydraulically efficient than TPKW9 for the model geometry. Furthur the study finds that under partial to full submergence of PKW outlets, both PKW units' discharging capability remains unchanged.


2021 ◽  
Vol 11 (1) ◽  
pp. 84-92
Author(s):  
SMG Akele ◽  
M. Ejededawe ◽  
G. A.Udoekong ◽  
A. Uwadiae ◽  
M. E. Oviawe ◽  
...  

Investigations of laminar fluid flow between two moving or stationary plates, and two rotating discs, over the years were geared toward how to increase Tesla-based turbine efficiency. Therefore, this research entails the construction, design and simulation of a Tesla turbine in order to investigate the potential of Tesla turbine for energy generation. Method of solution entails the design and construction of a physical model Tesla turbine from locally sourced materials. The physical model geometry and design parameters were then used to conduct numerical simulation. Performance evaluation was then carried on the physical model and the simulation model. The result showed that voltage, current and power all increase with increase in rev. per minute.  The result obtained indicates that for higher power generation, a Tesla turbine design with higher revolution per minute capability will be required.  Turbine model simulation showed that radial velocity vector to be concentrated at the discs periphery and outlet. The research results are good references for design of larger Tesla turbine for community use.


Sign in / Sign up

Export Citation Format

Share Document