scholarly journals An Approach to Alchemical Binding Free-Energy Calculations Using Coupled Topologies

Author(s):  
David Huggins

<p>We present an approach to performing alchemical binding free energies which we term coupled topologies. Simultaneously coupling a molecule in the bound state while decoupling it in the unbound state allows us to calculate free energy changes where the system changes charge, without the need to correct for simulation artifacts. This solves a longstanding problem in computing free energy changes. The approach is applied to separated topology relative binding free energy calculations, but is appropriate for single topology calculations and dual topology calculations as well as absolute binding free energy calculations. We apply the method to small-molecule inhibitors of AmpC β-lactamase and show the coupled topologies approach yields results that are in excellent agreement with experiment and good agreement with a state-of-the-art separated topology approach. The promising results on this test case suggest that the coupled topologies approach will be a useful addition to the available arsenal of free-energy methods.</p>

2018 ◽  
Author(s):  
David Huggins

<p>We present an approach to performing alchemical binding free energies which we term coupled topologies. Simultaneously coupling a molecule in the bound state while decoupling it in the unbound state allows us to calculate free energy changes where the system changes charge, without the need to correct for simulation artifacts. This solves a longstanding problem in computing free energy changes. The approach is applied to separated topology relative binding free energy calculations, but is appropriate for single topology calculations and dual topology calculations as well as absolute binding free energy calculations. We apply the method to small-molecule inhibitors of AmpC β-lactamase and show the coupled topologies approach yields results that are in excellent agreement with experiment and good agreement with a state-of-the-art separated topology approach. The promising results on this test case suggest that the coupled topologies approach will be a useful addition to the available arsenal of free-energy methods.</p>


Author(s):  
Germano Heinzelmann ◽  
Michael K. Gilson

AbstractAbsolute binding free energy calculations with explicit solvent molecular simulations can provide estimates of protein-ligand affinities, and thus reduce the time and costs needed to find new drug candidates. However, these calculations can be complex to implement and perform. Here, we introduce the software BAT.py, a Python tool that invokes the AMBER simulation package to fully automate the calculation of binding free energies for a protein with a series of ligands. We report encouraging initial test applications of this software both to re-rank docked poses and to estimate overall binding free energies. We also show that it is practical to carry out these calculations cheaply by using graphical processing units in common machines that can be built for this purpose. The combination of automation and low cost allows this procedure to be applied in a relatively high-throughput mode, and thus enables new applications in early-stage drug discovery.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Germano Heinzelmann ◽  
Michael K. Gilson

AbstractAbsolute binding free energy calculations with explicit solvent molecular simulations can provide estimates of protein-ligand affinities, and thus reduce the time and costs needed to find new drug candidates. However, these calculations can be complex to implement and perform. Here, we introduce the software BAT.py, a Python tool that invokes the AMBER simulation package to automate the calculation of binding free energies for a protein with a series of ligands. The software supports the attach-pull-release (APR) and double decoupling (DD) binding free energy methods, as well as the simultaneous decoupling-recoupling (SDR) method, a variant of double decoupling that avoids numerical artifacts associated with charged ligands. We report encouraging initial test applications of this software both to re-rank docked poses and to estimate overall binding free energies. We also show that it is practical to carry out these calculations cheaply by using graphical processing units in common machines that can be built for this purpose. The combination of automation and low cost positions this procedure to be applied in a relatively high-throughput mode and thus stands to enable new applications in early-stage drug discovery.


2021 ◽  
Author(s):  
Yuriy Khalak ◽  
Gary Tresdern ◽  
Matteo Aldeghi ◽  
Hannah Magdalena Baumann ◽  
David L. Mobley ◽  
...  

The recent advances in relative protein-ligand binding free energy calculations have shown the value of alchemical methods in drug discovery. Accurately assessing absolute binding free energies, although highly desired, remains...


Sign in / Sign up

Export Citation Format

Share Document