The Nature of Chemisorbed CO2 in Zeolite A

2019 ◽  
Author(s):  
Przemyslaw Rzepka ◽  
Zoltán Bacsik ◽  
Andrew J. Pell ◽  
Niklas Hedin ◽  
Aleksander Jaworski

Formation of CO<sub>3</sub><sup>2-</sup> and HCO<sub>3</sub><sup>-</sup> species without participation of the framework oxygen atoms upon chemisorption of CO<sub>2</sub> in zeolite |Na<sub>12</sub>|-A is revealed. The transfer of O and H atoms is very likely to have proceeded via the involvement of residual H<sub>2</sub>O or acid groups. A combined study by solid-state <sup>13</sup>C MAS NMR, quantum chemical calculations, and <i>in situ</i> IR spectroscopy showed that the chemisorption mainly occurred by the formation of HCO<sub>3</sub><sup>-</sup>. However, at a low surface coverage of physisorbed and acidic CO<sub>2</sub>, a significant fraction of the HCO<sub>3</sub><sup>-</sup> was deprotonated and transformed into CO<sub>3</sub><sup>2-</sup>. We expect that similar chemisorption of CO<sub>2</sub> would occur for low-silica zeolites and other basic silicates of interest for the capture of CO<sub>2</sub> from gas mixtures.

2018 ◽  
Author(s):  
Przemyslaw Rzepka ◽  
Zoltán Bacsik ◽  
Andrew J. Pell ◽  
Niklas Hedin ◽  
Aleksander Jaworski

Formation of CO<sub>3</sub><sup>2-</sup> and HCO<sub>3</sub><sup>-</sup> species without participation of the framework oxygen atoms upon chemisorption of CO<sub>2</sub> in zeolite |Na<sub>12</sub>|-A is revealed. The transfer of O and H atoms is very likely to have proceeded via the involvement of residual H<sub>2</sub>O or acid groups. A combined study by solid-state <sup>13</sup>C MAS NMR, quantum chemical calculations, and <i>in situ</i> IR spectroscopy showed that the chemisorption mainly occurred by the formation of HCO<sub>3</sub><sup>-</sup>. However, at a low surface coverage of physisorbed and acidic CO<sub>2</sub>, a significant fraction of the HCO<sub>3</sub><sup>-</sup> was deprotonated and transformed into CO<sub>3</sub><sup>2-</sup>. We expect that similar chemisorption of CO<sub>2</sub> would occur for low-silica zeolites and other basic silicates of interest for the capture of CO<sub>2</sub> from gas mixtures.


2019 ◽  
Author(s):  
Przemyslaw Rzepka ◽  
Zoltán Bacsik ◽  
Andrew J. Pell ◽  
Niklas Hedin ◽  
Aleksander Jaworski

Formation of CO<sub>3</sub><sup>2-</sup> and HCO<sub>3</sub><sup>-</sup> species without participation of the framework oxygen atoms upon chemisorption of CO<sub>2</sub> in zeolite |Na<sub>12</sub>|-A is revealed. The transfer of O and H atoms is very likely to have proceeded via the involvement of residual H<sub>2</sub>O or acid groups. A combined study by solid-state <sup>13</sup>C MAS NMR, quantum chemical calculations, and <i>in situ</i> IR spectroscopy showed that the chemisorption mainly occurred by the formation of HCO<sub>3</sub><sup>-</sup>. However, at a low surface coverage of physisorbed and acidic CO<sub>2</sub>, a significant fraction of the HCO<sub>3</sub><sup>-</sup> was deprotonated and transformed into CO<sub>3</sub><sup>2-</sup>. We expect that similar chemisorption of CO<sub>2</sub> would occur for low-silica zeolites and other basic silicates of interest for the capture of CO<sub>2</sub> from gas mixtures.


2008 ◽  
Vol 6 (3) ◽  
pp. 393-399 ◽  
Author(s):  
Tsonko Kolev ◽  
Bojidarka Koleva ◽  
Michael Spiteller

AbstractThe applications of linear-polarized IR-spectroscopy to oriented colloid suspensions in a nematic host are demonstrated with croconic and rhodizonic acids. The experimental IR vibrational assignments of the solid-state of both neutral compounds are presented. Assignments are supported by theoretical quantum chemical calculations and vibrational analysis at the DFT level of theoretical approximation with the 6-311++G** basis set.


2015 ◽  
Vol 51 (18) ◽  
pp. 3889-3891 ◽  
Author(s):  
D. Naglav ◽  
A. Neumann ◽  
D. Bläser ◽  
C. Wölper ◽  
R. Haack ◽  
...  

The solid state structure of Be[N(SiMe3)2]2 (1) was determined by in situ crystallisation and the bonding situation investigated by quantum chemical calculations. The Be–N bond is predominantly ionic but also shows some π-bonding character.


2013 ◽  
Vol 2013 (24) ◽  
pp. 4184-4190 ◽  
Author(s):  
Florian Kraus ◽  
Sebastian A. Baer ◽  
Markus Hoelzel ◽  
Antti J. Karttunen

2019 ◽  
Vol 21 (36) ◽  
pp. 19879-19889
Author(s):  
María Mar Quesada-Moreno ◽  
Juan Ramón Avilés-Moreno ◽  
Juan Jesús López-González ◽  
Fco. Javier Zúñiga ◽  
Dolores Santa María ◽  
...  

4aα (chiral) and 4aβ (achiral) polymorphs of 1H-benzotriazole are studied by X-ray crystallography, SSNMR, IR, Raman, VCD, and quantum chemical calculations. The absolute configuration of the supramolecular structure of 4aα polymorph is determined.


2016 ◽  
Vol 45 (12) ◽  
pp. 5038-5044 ◽  
Author(s):  
Felix Brosi ◽  
Tobias Schlöder ◽  
Alexei Schmidt ◽  
Helmut Beckers ◽  
Sebastian Riedel

Molecular manganese fluorides were studied in solid neon, argon and fluorine using IR spectroscopy and quantum-chemical calculations at DFT and CCSD(T) levels.


Sign in / Sign up

Export Citation Format

Share Document