Ketones from Nickel-Catalyzed Decarboxylative, Non-Symmetric Cross-Electrophile Coupling of Carboxylic Acid Esters

Author(s):  
Jiang Wang ◽  
Brian P. Cary ◽  
Peyton Beyer ◽  
Samuel H. Gellman ◽  
Daniel Weix

A new strategy for the synthesis of ketones is presented based upon the decarboxylative coupling of N-hydroxyphthalimide (NHP) esters with S-2-pyridyl thioesters. The reactions are selective for the cross-coupled product because NHP esters act as radical donors and the thioesters act as acyl donors. The reaction conditions are general and mild, with over 40 examples presented, including larger fragments and the 20-mer peptide Exendin(9-39) on solid support.

2019 ◽  
Author(s):  
Jiang Wang ◽  
Brian P. Cary ◽  
Peyton Beyer ◽  
Samuel H. Gellman ◽  
Daniel Weix

A new strategy for the synthesis of ketones is presented based upon the decarboxylative coupling of N-hydroxyphthalimide (NHP) esters with S-2-pyridyl thioesters. The reactions are selective for the cross-coupled product because NHP esters act as radical donors and the thioesters act as acyl donors. The reaction conditions are general and mild, with over 40 examples presented, including larger fragments and the 20-mer peptide Exendin(9-39) on solid support.


2008 ◽  
Vol 2008 ◽  
pp. 1-4
Author(s):  
Zheming Ruan ◽  
Katy Van Kirk ◽  
Christopher B. Cooper ◽  
R. Michael Lawrence

The direct conversion of solid-supported carboxylic acid allyl esters to carboxamides through the use of phenylsilane and catalytic Pd under mild reaction conditions is reported. The use of this methodology for the generation of a 48 compound solid-phase array is described herein.


2020 ◽  
Vol 17 (3) ◽  
pp. 211-215
Author(s):  
Da Chen ◽  
Xuan Wang ◽  
Runnan Wang ◽  
Yao Zhan ◽  
Xiaohan Peng ◽  
...  

The Friedlander reaction is the most commonly used method to synthesis substituted quinolines, the essential intermediates in the medicine industry. A facile one-pot approach for synthesizing substituted quinolines by the reaction of isoxazoles, ammonium formate-Pd/C, concentrated sulfuric acid, methanol and ketones using Friedlander reaction conditions is reported. Procedures for the synthesis of quinoline derivatives were optimized, and the yield was up to 90.4%. The yield of aromatic ketones bearing electron-withdrawing groups was better than the ones with electron-donating substituents. The structures of eight substituted quinolines were characterized by MS, IR, H-NMR and 13CNMR, which were in agreement with the expected structures. The mechanism for the conversion was proposed, which involved the Pd/C catalytic hydrogen transfer reduction of unsaturated five-membered ring of isoxazole to produce ortho-amino aromatic ketones. Then the nucleophilic addition of with carbonyl of the ketones generated Schiff base in situ, which underwent an intermolecular aldol reaction followed by the elimination of H2O to give production of substituted quinolines. This new strategy can be readily applied for the construction of quinolines utilizing a diverse range of ketones and avoids the post-reaction separation of the o-amino aromatic ketone compounds. The conventionally used o-amino aromatic ketone compounds in Friedlander reaction to prepare substituted quinoline are laborious to synthesize and are apt to self-polymerize. While oxazole adopted in this work can be prepared at ease by the condensation of benzoacetonitrile and nitrobenzene derivatives under the catalysis of a strong base. Moreover, the key features of this protocol are readily available starting materials, excellent functional group tolerance, mild reaction conditions, operational simplicity, and feasibility for scaling up.


ChemInform ◽  
2010 ◽  
Vol 27 (33) ◽  
pp. no-no
Author(s):  
L. JEANNIN ◽  
J. SAPI ◽  
E. VASSILEVA ◽  
P. RENARD ◽  
J.-Y. LARONZE
Keyword(s):  

ChemSusChem ◽  
2013 ◽  
Vol 7 (2) ◽  
pp. 644-649 ◽  
Author(s):  
Ursula Biermann ◽  
Jürgen O. Metzger
Keyword(s):  

Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 4064
Author(s):  
Xuebin Wang ◽  
Jiecheng Ji ◽  
Zejiang Liu ◽  
Yimin Cai ◽  
Jialiang Tang ◽  
...  

A hydrogen-bonded (H-bonded) amide macrocycle was found to serve as an effective component in the host–guest assembly for a supramolecular chirality transfer process. Circular dichroism (CD) spectroscopy studies showed that the near-planar macrocycle could produce a CD response when combined with three of the twelve L-α-amino acid esters (all cryptochiral molecules) tested as possible guests. The host–guest complexation between the macrocycle and cationic guests was explored using NMR, revealing the presence of a strong affinity involving the multi-point recognition of guests. This was further corroborated by density functional theory (DFT) calculations. The present work proposes a new strategy for amplifying the CD signals of cryptochiral molecules by means of H-bonded macrocycle-based host–guest association, and is expected to be useful in designing supramolecular chiroptical sensing materials.


Zeolites ◽  
1995 ◽  
Vol 15 (1) ◽  
pp. 84
Author(s):  
H. Nakajima ◽  
T. Fujii ◽  
K. Kitagawa

Sign in / Sign up

Export Citation Format

Share Document