Tuning the Electric Field Response of MOFs by Rotatable Dipolar Linkers

Author(s):  
Johannes P. Dürholt ◽  
Babak Farhadi Jahromi ◽  
Rochus Schmid

Recently the possibility of using electric fields as a further stimulus to trigger structural changes in metal-organic frameworks (MOFs) has been investigated. In general, rotatable groups or other types of mechanical motion can be driven by electric fields. In this study we demonstrate how the electric response of MOFs can be tuned by adding rotatable dipolar linkers, generating a material that exhibits paralectric behavior in two dimensions and dielectric behavior in one dimension. The suitability of four different methods to compute the relative permittivity κ by means of molecular dynamics simulations was validated. The dependency of the permittivity on temperature T and dipole strength μ was determined. It was found that the herein investigated systems exhibit a high degree of tunability and substantially larger dielectric constants as expected for MOFs in general. The temperature dependency of κ obeys the Curie-Weiss law. In addition, the influence of dipolar linkers on the electric field induced breathing behavior was investigated. With increasing dipole moment, lower field strength are required to trigger the contraction. These investigations set the stage for an application of such systems as dielectric sensors, order-disorder ferroelectrics or any scenario where movable dipolar fragments respond to external electric fields.

2019 ◽  
Author(s):  
Johannes P. Dürholt ◽  
Babak Farhadi Jahromi ◽  
Rochus Schmid

Recently the possibility of using electric fields as a further stimulus to trigger structural changes in metal-organic frameworks (MOFs) has been investigated. In general, rotatable groups or other types of mechanical motion can be driven by electric fields. In this study we demonstrate how the electric response of MOFs can be tuned by adding rotatable dipolar linkers, generating a material that exhibits paralectric behavior in two dimensions and dielectric behavior in one dimension. The suitability of four different methods to compute the relative permittivity κ by means of molecular dynamics simulations was validated. The dependency of the permittivity on temperature T and dipole strength μ was determined. It was found that the herein investigated systems exhibit a high degree of tunability and substantially larger dielectric constants as expected for MOFs in general. The temperature dependency of κ obeys the Curie-Weiss law. In addition, the influence of dipolar linkers on the electric field induced breathing behavior was investigated. With increasing dipole moment, lower field strength are required to trigger the contraction. These investigations set the stage for an application of such systems as dielectric sensors, order-disorder ferroelectrics or any scenario where movable dipolar fragments respond to external electric fields.


2004 ◽  
Vol 76 (1) ◽  
pp. 215-221 ◽  
Author(s):  
A. Vegiri

The origin of the dramatic increase of the reorientational and structural relaxation rates of single water molecules in clusters of size N = 16, 32, and 64 at T = 200 K, under the influence of an external, relatively weak electric field (~0.5 107 V/cm) is examined through molecular dynamics simulations. The observed effect is attributed not to any profound structural changes, but to the increase of the size of the molecular cage. The response of water to an electric field in this range shows many similarities with the dynamics of water under low pressure. By referring to simulations and experiments from the literature, we show that in both cases the observed effects are dictated by a common mechanism.


1994 ◽  
Vol 359 ◽  
Author(s):  
C. J. Brabec ◽  
A. Maiti ◽  
C. Roland ◽  
J. Bernholc

ABSTRACTIt has been shown experimentally that the growth of carbon nanotubes in an arc discharge is open-ended. This is surprising, because dangling bonds at the end of open tubes make the closed tube geometry more favorable energetically. Recently, it has been proposed that the large electric fields present at the tip of tube is the critical factor that keeps the tube open. We have studied the effects of the electric field on the growth of the nanotubes via ab initio molecular dynamics simulations. Surprisingly, it is found that the electric field cannot play a significant role in keeping the tubes open, implying that some other mechanism must be important. Extensive studies of the energetics and simulations of the growth of tubes were performed using a threebody Tersoff-Brenner potential. Our results show that there exists a critical diameter of ∼ 3 nm above which a defect-free growth of a straight tubule is possible. Narrower tubes stabilize configurations with adjacent pentagons that lead to tube-closure and termination of the growth. This explains the absence of tube narrower than 2.2 nm in arc discharge experiments.


2020 ◽  
Author(s):  
Paolo Raiteri ◽  
Peter Kraus ◽  
Julian Gale

Molecular dynamics simulations of the liquid-liquid interface between water and 1,2-Dichloroethane in the presence of weak external electric fields.<div>The effect of the use of 3D periodic Ewald summation and the effect of the simulation setup are discussed.</div><div>A new simple geometric method for designing the simulation cell is proposed. This method was thoroughly tested shown that it mitigates any artefacts to the use of 3D Ewald summation with external electric field.</div>


Particles ◽  
2019 ◽  
Vol 2 (2) ◽  
pp. 208-230 ◽  
Author(s):  
Stanislav A. Smolyansky ◽  
Anatolii D. Panferov ◽  
David B. Blaschke ◽  
Narine T. Gevorgyan

On the basis of the well-known kinetic description of e − e + vacuum pair creation in strong electromagnetic fields in D = 3 + 1 QED we construct a nonperturbative kinetic approach to electron-hole excitations in graphene under the action of strong, time-dependent electric fields. We start from the simplest model of low-energy excitations around the Dirac points in the Brillouin zone. The corresponding kinetic equations are analyzed by nonperturbative analytical and numerical methods that allow to avoid difficulties characteristic for the perturbation theory. We consider different models for external fields acting in both, one and two dimensions. In the latter case we discuss the nonlinear interaction of the orthogonal currents in graphene which plays the role of an active nonlinear medium. In particular, this allows to govern the current in one direction by means of the electric field acting in the orthogonal direction. Investigating the polarization current we detected the existence of high frequency damped oscillations in a constant external electric field. When the electric field is abruptly turned off residual inertial oscillations of the polarization current are obtained. Further nonlinear effects are discussed.


2020 ◽  
Vol 8 (32) ◽  
pp. 16385-16391
Author(s):  
Ankit Agrawal ◽  
Mayank Agrawal ◽  
Donguk Suh ◽  
Yunsheng Ma ◽  
Ryotaro Matsuda ◽  
...  

The guest-induced structural changes in LMOF-201 were demonstrated by using reactive force field combined with Grand Canonical Monte Carlo and molecular dynamics simulations.


2020 ◽  
Author(s):  
Yufan Wu ◽  
Stephen Fried ◽  
Steven Boxer

<div><p>Electrostatic interactions play a pivotal role in enzymatic catalysis and are increasingly modeled explicitly in computational enzyme design; nevertheless, they are challenging to measure experimentally. Using vibrational Stark effect (VSE) spectroscopy, we have measured electric fields inside the active site of the enzyme ketosteroid isomerase (KSI). These studies have shown that these fields can be unusually large, but it has been unclear to what extent they specifically stabilize the transition state (TS) relative to a ground state (GS). In the following, we use crystallography and computational modeling to show that KSI’s intrinsic electric field is nearly perfectly oriented to stabilize the geometry of its reaction’s TS. Moreover, we find that this electric field adjusts the orientation of its substrate in the ground state so that the substrate needs to only undergo minimal structural changes upon activation to its TS. This work provides evidence that the active site electric field in KSI is preorganized to facilitate catalysis and provides a template for how electrostatic preorganization can be measured in enzymatic systems. <br></p></div>


Author(s):  
Yin Ma ◽  
Tong Li ◽  
Jun Yan ◽  
Xiaorong Wang ◽  
Ji Gao ◽  
...  

Electric field assisted combustion is an important means to improve fuel combustion efficiency. This paper conducts extensive research on flame characteristics under different forms and different application methods of electric fields, emission of soot particles and simulation status. Different flame parameter measurement methods will lead to different degrees of error, and perfect numerical simulation can make simple predictions on experimental data. Most of the current numerical simulations are in two dimensions, and it is necessary to develop a complete and accurate three-dimensional model to simulate and predict the characteristics of the flame under an electric field. The emission of soot particles is also affected by the electric field, and reasonable electric field parameters can greatly reduce the emission of soot particles. It is recommended to conduct centralized measurement of different fuels under the electric field under high pressure and temperature conditions, so as to be able to develop a wider and more accurate flame dynamics and chemical model under the electric field.


2020 ◽  
Author(s):  
Paolo Raiteri ◽  
Peter Kraus ◽  
Julian Gale

Molecular dynamics simulations of the liquid-liquid interface between water and 1,2-Dichloroethane in the presence of weak external electric fields.<div>The effect of the use of 3D periodic Ewald summation and the effect of the simulation setup are discussed.</div><div>A new simple geometric method for designing the simulation cell is proposed. This method was thoroughly tested shown that it mitigates any artefacts to the use of 3D Ewald summation with external electric field.</div>


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Kia Dastani ◽  
Mahdi Moghimi Zand ◽  
Hanie Kavand ◽  
Reza Javidi ◽  
Amin Hadi ◽  
...  

AbstractElectroporation is defined as cell membrane permeabilization under the application of electric fields. The mechanism of hydrophilic pore formation is not yet well understood. When cells are exposed to electric fields, electrical stresses act on their surfaces. These electrical stresses play a crucial role in cell membrane structural changes, which lead to cell permeabilization. These electrical stresses depend on the dielectric properties of the cell, buffer solution, and the applied electric field characteristics. In the current study, the effect of electric field frequency on the electrical stresses distribution on the cell surface and cell deformation is numerically and experimentally investigated. As previous studies were mostly focused on the effect of electric fields on a group of cells, the present study focused on the behavior of a single cell exposed to an electric field. To accomplish this, the effect of cells on electrostatic potential distribution and electric field must be considered. To do this, Fast immersed interface method (IIM) was used to discretize the governing quasi-electrostatic equations. Numerical results confirmed the accuracy of fast IIM in satisfying the internal electrical boundary conditions on the cell surface. Finally, experimental results showed the effect of applied electric field on cell deformation at different frequencies.


Sign in / Sign up

Export Citation Format

Share Document