scholarly journals Chiral-Induced Spin Selectivity: A Symmetry Analysis of Electronic Transmission

Author(s):  
Martin Sebastian Zöllner ◽  
Solmar Varela ◽  
Ernesto Medina ◽  
Vladimiro Mujica ◽  
Carmen Herrmann

The chiral-induced spin selectivity (CISS) effect, which describes the spin-filtering ability of diamagnetic structures like DNA or peptides having chiral symmetry, has emerged in the past years as the central mechanism behind a number of important phenomena, like long-range biological electron transfer, enantiospecific electrocatalysis, and molecular recognition. Also, CISS-induced spin polarization has a considerable promise for new spintronic devices and the design of quantum materials. The CISS effect is attributed to spin–orbit coupling, but a sound theoretical understanding of the surprising magnitude of this effect in molecules without heavy atoms is currently lacking. We are taking an essential step into this direction by analyzing the importance of imaginary terms in the Hamiltonian as a necessary condition for non-vanishing spin polarization in helical structures. Based on first-principles calculations and analytical considerations, we perform a symmetry analysis of the key quantities determining transport probabilities of electrons of different spin orientations. These imaginary terms originate from the spin–orbit coupling, and they preserve the Hermitian nature of the Hamiltonian. Hence, they are not related to the breaking of time-reversal symmetry resulting from the fact that molecules are open systems in a junction. Our symmetry analysis helps to identify essential constraints in the theoretical description of the CISS effect. We further draw an analogy with the appearance of imaginary terms in simple models of barrier scattering, which may help understanding the unusually effective long-range electron transfer in biological systems.<br>

2019 ◽  
Author(s):  
Martin Sebastian Zöllner ◽  
Solmar Varela ◽  
Ernesto Medina ◽  
Vladimiro Mujica ◽  
Carmen Herrmann

The chiral-induced spin selectivity (CISS) effect, which describes the spin-filtering ability of diamagnetic structures like DNA or peptides having chiral symmetry, has emerged in the past years as the central mechanism behind a number of important phenomena, like long-range biological electron transfer, enantiospecific electrocatalysis, and molecular recognition. Also, CISS-induced spin polarization has a considerable promise for new spintronic devices and the design of quantum materials. The CISS effect is attributed to spin–orbit coupling, but a sound theoretical understanding of the surprising magnitude of this effect in molecules without heavy atoms is currently lacking. We are taking an essential step into this direction by analyzing the importance of imaginary terms in the Hamiltonian as a necessary condition for non-vanishing spin polarization in helical structures. Based on first-principles calculations and analytical considerations, we perform a symmetry analysis of the key quantities determining transport probabilities of electrons of different spin orientations. These imaginary terms originate from the spin–orbit coupling, and they preserve the Hermitian nature of the Hamiltonian. Hence, they are not related to the breaking of time-reversal symmetry resulting from the fact that molecules are open systems in a junction. Our symmetry analysis helps to identify essential constraints in the theoretical description of the CISS effect. We further draw an analogy with the appearance of imaginary terms in simple models of barrier scattering, which may help understanding the unusually effective long-range electron transfer in biological systems.<br>


Author(s):  
Martin Sebastian Zöllner ◽  
Solmar Varela ◽  
Ernesto Medina ◽  
Vladimiro Mujica ◽  
Carmen Herrmann

An intriguing phenomenon has emerged in the past years showing considerable promise for new spintronic devices, catalysis, and for biological electron transfer: the chiral- induced spin selectivity (CISS) effect, which describes the spin-filtering ability of diamagnetic helical structures like DNA or peptides having chiral symmetry. The effect is attributed to atomic spin-orbit coupling, which is surprising due to the lack of heavy elements in such compounds. Theoretical descriptions with model Hamiltonians are able to explain the spin filtering qualitatively, but underestimate its magnitude by several orders when using realistic parameters for atomic spin-orbit coupling. To find the origin of the large spin filtering, a first-principles description is mandatory. We are taking an essential step into this direction by calculating spin polarization within the Landauer–Imry– Büttiker approach, using two-component density-functional theory including spin–orbit coupling. We identify the imaginary part of the effective single-particle Hamiltonian as the origin of direction-dependent spin filtering in helical structures by showing its effect on the symmetry of the Green’s function matrices. This imaginary part originates from spin–orbit coupling. This relation could help identify what is currently lacking in first-principles modeling of the CISS effect. We further draw an analogy with imaginary terms in barrier scattering, which may help understand the unusually effective long-range electron transfer in biological systems.


2019 ◽  
Vol 100 (12) ◽  
Author(s):  
Yulin Gan ◽  
Yu Zhang ◽  
Dennis Valbjørn Christensen ◽  
Nini Pryds ◽  
Yunzhong Chen

Sign in / Sign up

Export Citation Format

Share Document