scholarly journals Modeling Interfacial Electron Transfer in the Double Layer: The Interplay Between Electrode Coupling and Electrostatic Driving

Author(s):  
Aditya Limaye ◽  
Adam Willard

This manuscript presents a theoretical model for simulating interfacial electron transfer reactions within the electrical double layer. This model resolves the population density of redox active species and simulated electron transfer at the level of Marcus theory, with a fluctuating solvent polarization coordinate. In this model, the kinetics and thermodynamics of electron transfer depend on the values of the electronic coupling of species (to the electrode) and the electrical potential drop, respectively.

2019 ◽  
Author(s):  
Aditya Limaye ◽  
Adam Willard

This manuscript presents a theoretical model for simulating interfacial electron transfer reactions within the electrical double layer. This model resolves the population density of redox active species and simulated electron transfer at the level of Marcus theory, with a fluctuating solvent polarization coordinate. In this model, the kinetics and thermodynamics of electron transfer depend on the values of the electronic coupling of species (to the electrode) and the electrical potential drop, respectively.


2021 ◽  
Author(s):  
Dai Oyama ◽  
Takatoshi Kanno ◽  
Tsugiko Takase

Quinone derivatives and their metal complexes are well-known molecules that participate in electron-transfer reactions relevant to diverse fields. However, the fundamental knowledge on the unique reactivity of redox-active quinone complexes...


2010 ◽  
Vol 63 (2) ◽  
pp. 184 ◽  
Author(s):  
Suresh Gadde ◽  
Elizabeth K. Batchelor ◽  
Angel E. Kaifer

This manuscript presents a summary of recent research work on the electrochemical behaviour of redox active guests fully or almost fully encapsulated by suitable molecular receptors or molecular capsules. From the standpoint of their voltammetric behaviour the cyclodextrins have been shown to be very dynamic hosts, which hamper the observation of direct electron transfer to/from their inclusion complexes. Therefore, this Review is essentially concerned with research work on cucurbituril and cavitand-type hosts, which was mostly done in the author’s laboratory. In general terms, the observed voltammetric behaviour for encapsulated guests covers a wide range of possibilities. Cucurbituril and cavitand-type hosts afford more kinetically stable complexes, whose direct electrochemical behaviour is observable and tends to be kinetically slower than that of the free guests. However, the degree of kinetic attenuation varies over a wide range and, in some cases, challenges our ability to rationalize the data. Clearly, more variation in the host structures and more research work are required to improve our understanding of encapsulation effects on these electron transfer reactions.


2016 ◽  
Vol 4 (18) ◽  
pp. 6819-6823 ◽  
Author(s):  
Sudipta Chatterjee ◽  
Kushal Sengupta ◽  
Sabyasachi Bandyopadhyay ◽  
Abhishek Dey

Ammonium tetrathiomolybdate modified gold electrodes can easily tune the rate of electron transfer to the redox active species when the deposition time is varied.


Sign in / Sign up

Export Citation Format

Share Document