High-efficiency parallelization of programs, implementing the Hartree-Fock method, the density functional theory, and the configuration interaction method

2016 ◽  
Vol 4 (2) ◽  
Author(s):  
A.V. Mitin
Author(s):  
A.B.J. Parusel ◽  
R. Schamschule ◽  
G. Köhler

A combination of density functional theory and multi-reference configuration interaction method (DFT/MRCI) is used to investigate the excited state intramolecular charge transfer (ICT) reaction for the


2007 ◽  
Vol 16 (02) ◽  
pp. 249-262 ◽  
Author(s):  
X. VIÑAS ◽  
V. I. TSELYAEV ◽  
V. B. SOUBBOTIN ◽  
S. KREWALD

We propose first a generalization of the Density Functional Theory leading to single-particle equations of motion with a quasilocal mean-field operator containing a position-dependent effective mass and a spin-orbit potential. Ground-state properties of doubly magic nuclei are obtained within this framework using the Gogny D1S force and compared with the exact Hartree-Fock values. Next, extend the Density Functional Theory to include pairing correlations without formal violation of the particle-number condition. This theory, which is nonlocal, is simplified by a suitable quasilocal reduction. Some calculations to show the ability of this theory are presented.


1982 ◽  
Vol 60 (2) ◽  
pp. 210-221 ◽  
Author(s):  
M. J. Stott ◽  
E. Zaremba ◽  
D. Zobin

The quadrupole polarizability and Sternheimer antishielding factor have been calculated for selected closed-shell atoms and ions using the density functional theory. In most cases, the results agree favourably with coupled Hartree–Fock calculations. However, for atoms with valence (d-shells the local density approximation used in the calculations is found to be inadequate. Our results suggest that refinements to the exchange-correlation energy functional are required in order to obtain accurate values for the polarizability and shielding factor of (d-shell atoms within a density functional approach.


Sign in / Sign up

Export Citation Format

Share Document