scholarly journals Why Directionality Is an Important Light Factor for Human Health to Consider in Lighting Design?

2016 ◽  
Vol 18 ◽  
pp. 3-8 ◽  
Author(s):  
Parisa Khademagha ◽  
Myriam Aries ◽  
Alexander Rosemann ◽  
Evert Van Loenen

aims at meeting human vision and health requirements. Intrinsically Photosensitive Retinal Ganglion Cells (ipRGCs) appear to play an essential role in stimulation of the non-image forming effects and thus human health and well-being. There are indications that radiation incident contributes to the magnitude of these effects. This review summarizes current studies on humans and animals related to radiation directionality as well as the spatial distribution of ipRGCs on the retina. New insights can facilitate and optimize the incorporation of radiation directionality in building lighting design.

2010 ◽  
Vol 91 (3) ◽  
pp. 425-432 ◽  
Author(s):  
Huiling Hu ◽  
Wennan Lu ◽  
Mei Zhang ◽  
Xiulan Zhang ◽  
Arthur J. Argall ◽  
...  

2019 ◽  
Vol 20 (13) ◽  
pp. 3164 ◽  
Author(s):  
Pedro Lax ◽  
Isabel Ortuño-Lizarán ◽  
Victoria Maneu ◽  
Manuel Vidal-Sanz ◽  
Nicolás Cuenca

Melanopsin-containing retinal ganglion cells (mRGCs) represent a third class of retinal photoreceptors involved in regulating the pupillary light reflex and circadian photoentrainment, among other things. The functional integrity of the circadian system and melanopsin cells is an essential component of well-being and health, being both impaired in aging and disease. Here we review evidence of melanopsin-expressing cell alterations in aging and neurodegenerative diseases and their correlation with the development of circadian rhythm disorders. In healthy humans, the average density of melanopsin-positive cells falls after age 70, accompanied by age-dependent atrophy of dendritic arborization. In addition to aging, inner and outer retinal diseases also involve progressive deterioration and loss of mRGCs that positively correlates with progressive alterations in circadian rhythms. Among others, mRGC number and plexus complexity are impaired in Parkinson’s disease patients; changes that may explain sleep and circadian rhythm disorders in this pathology. The key role of mRGCs in circadian photoentrainment and their loss in age and disease endorse the importance of eye care, even if vision is lost, to preserve melanopsin ganglion cells and their essential functions in the maintenance of an adequate quality of life.


Author(s):  
A. E. Hadjinicolaou ◽  
C. O. Savage ◽  
N. V. Apollo ◽  
D. J. Garrett ◽  
S. L. Cloherty ◽  
...  

2020 ◽  
Author(s):  
Naïg Aurélia Ludmilla Chenais ◽  
Marta Jole Ildelfonsa Airaghi Leccardi ◽  
Diego Ghezzi

AbstractObjectiveRetinal stimulation in blind patients evokes the sensation of discrete points of light called phosphenes, which allows them performing visual guided tasks, such as orientation, navigation, object recognition, object manipulation and reading. However, the clinical benefit of artificial vision in profoundly blind patients is still tenuous, as several engineering and biophysical obstacles keep it away from natural perception. The relative preservation of the inner retinal neurons in hereditary degenerative retinal diseases, such as retinitis pigmentosa, supports artificial vision through the network-mediated stimulation of retinal ganglion cells. However, the response of retinal ganglion cells to repeated electrical stimulation rapidly declines, primarily because of the intrinsic desensitisation of their excitatory network. In patients, upon repetitive stimulation, phosphenes fade out in less than half of a second, which drastically limits the understanding of the percept.ApproachA more naturalistic stimulation strategy, based on spatiotemporal modulation of electric pulses, could overcome the desensitisation of retinal ganglion cells. To investigate this hypothesis, we performed network-mediated epiretinal stimulations paired to electrophysiological recordings in retinas explanted from both male and female retinal degeneration 10 mice.Main resultsThe results showed that the spatial and temporal modulation of the network-mediated epiretinal stimulation prolonged the responsivity of retinal ganglion cells from 400 ms up to 4.2 s.SignificanceA time-varied, non-stationary and interrupted stimulation of the retinal network, mimicking involuntary microsaccades, might reduce the fading of the visual percept and improve the clinical efficacy of retinal implants.


Sign in / Sign up

Export Citation Format

Share Document