Induction Machine Bearing Fault Diagnosis With Discrete Wavelet Transform Using Vibration Signal

2012 ◽  
Vol 5 (4) ◽  
pp. 11-17
Author(s):  
Ashwani Kumar Chandel ◽  
◽  
Raj Kumar Patel ◽  
2012 ◽  
Vol 490-495 ◽  
pp. 128-132
Author(s):  
Hui Li

A novel method of bearing fault diagnosis based on demodulation technique of dual-tree complex wavelet transform (DTCWT) is proposed. It is demonstrated that the proposed dual-tree complex wavelet transform has better shift invariance, reduced frequency aliasing effect and de-noising ability. The bearing fault vibration signal is firstly decomposed and reconstructed using dual-tree complex wavelet transform. Then the real and imaginary parts are obtained and the vibration signal is amplitude demodulated. In the end, the amplitude envelope and wavelet envelope spectrum are computed. Therefore, the character of the bearing fault can be recognized according to the wavelet envelope spectrum. The experimental results show that dual-tree complex wavelet transform can effectively reduce spectral aliasing and fault diagnosis based on dual-tree complex wavelet transform can effectively diagnose bearing inner and outer race fault under strong background noise condition.


2018 ◽  
Vol 18 (08) ◽  
pp. 1840034 ◽  
Author(s):  
SHIWEI LI ◽  
YONGPING ZHAO ◽  
MINGLI DING

The impact of motors breakdown and failures on mobile robot motor bearing is an important concern for robot industries. For this reason, predictive motor lifetime and bearing fault classification techniques are being investigated extensively as a method of decreasing motor downtime and enhancing mobile robot reliability. With increasing attention on neural network technologies, many researchers have carried out lots of the relevant experiments and analyses, very plentiful and important conclusions are obtained. In this article, a classification method based on discrete wavelet transform (DWT) and long short-term memory network (LSTM) a proposed to find and classify fault type of mobile robot permanent magnet synchronous motor (PMSM). First, a set of mobile robot motor vibration signal were collected by the sensors. Second, the obtained vibration signal is decomposed into six frequency bands by the DWT. Haar function is selected as the mother function in the processing. The energy of every frequency band was calculated as a classification feature. Thirdly, four classification features with high classification rate are obtained. The feature vector is used as input of the neural network, and the fault type is identified by LSTM classifier with deviation unit. From the results of the experiments provided in the paper, the method can detect the fault type accurately and it is feasible and effective under different motor speed.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Jun He ◽  
Xiang Li ◽  
Yong Chen ◽  
Danfeng Chen ◽  
Jing Guo ◽  
...  

In mechanical fault diagnosis, it is impossible to collect massive labeled samples with the same distribution in real industry. Transfer learning, a promising method, is usually used to address the critical problem. However, as the number of samples increases, the interdomain distribution discrepancy measurement of the existing method has a higher computational complexity, which may make the generalization ability of the method worse. To solve the problem, we propose a deep transfer learning method based on 1D-CNN for rolling bearing fault diagnosis. First, 1-dimension convolutional neural network (1D-CNN), as the basic framework, is used to extract features from vibration signal. The CORrelation ALignment (CORAL) is employed to minimize marginal distribution discrepancy between the source domain and target domain. Then, the cross-entropy loss function and Adam optimizer are used to minimize the classification errors and the second-order statistics of feature distance between the source domain and target domain, respectively. Finally, based on the bearing datasets of Case Western Reserve University and Jiangnan University, seven transfer fault diagnosis comparison experiments are carried out. The results show that our method has better performance.


2013 ◽  
Vol 753-755 ◽  
pp. 2290-2296 ◽  
Author(s):  
Wen Tao Huang ◽  
Yin Feng Liu ◽  
Pei Lu Niu ◽  
Wei Jie Wang

In the early fault diagnosis of rolling bearing, the vibration signal is mixed with a lot of noise, resulting in the difficulties in analysis of early weak fault signal. This article introduces resonance-based signal sparse decomposition (RSSD) into rolling bearing fault diagnosis, and studies the fault information contained in high resonance component and low resonance component. This article compares the effect of the two resonance components to extract rolling bearing fault information in four aspects: the amount of fault information, frequency resolution of subbands, sensitivity to noise and immunity to autocorrelation processing. We find that the high resonance component has greater advantage in extraction of rolling bearing fault information, and it is able to indicate rolling bearing failure accurately.


2012 ◽  
Vol 190-191 ◽  
pp. 993-997
Author(s):  
Li Jie Sun ◽  
Li Zhang ◽  
Yong Bo Yang ◽  
Da Bo Zhang ◽  
Li Chun Wu

Mechanical equipment fault diagnosis occupies an important position in the industrial production, and feature extraction plays an important role in fault diagnosis. This paper analyzes various methods of feature extraction in rolling bearing fault diagnosis and classifies them into two big categories, which are methods of depending on empirical rules and experimental trials and using objective methods for screening. The former includes five methods: frequency as the characteristic parameters, multi-sensor information fusion method, rough set attribute reduction method, "zoom" method and vibration signal as the characteristic parameters. The latter includes two methods: sensitivity extraction and data mining methods to select attributes. Currently, selection methods of feature parameters depend heavily on empirical rules and experimental trials, thus extraction results are be subjected to restriction from subjective level, feature extraction in the future will develop toward objective screening direction.


2013 ◽  
Vol 739 ◽  
pp. 413-417
Author(s):  
Ya Ning Wang

Laplace wavelet transform is self-adaptive to non-stationary and non-linear signal, which can detect the singularity characteristic of a signal precisely under strong background noise condition. A new method of bearing fault diagnosis based on multi-scale Laplace wavelet transform spectrum is proposed. The multi scale Laplace wavelet transform spectrum technique combines the advantages of Laplace wavelet transform, envelope spectrum and three dimensions color map into one integrated technique. The bearing fault vibration signal is firstly decomposed using Laplace wavelet transform. In the end, the multi scale Laplace wavelet transform spectrum is obtained and the characteristics of the bearing fault can be recognized according to the multi-scale Laplace wavelet transform spectrum. The proposed method has been verified by vibration signals obtained from rolling bearing with inner race fault.


Sign in / Sign up

Export Citation Format

Share Document