An Ant Algorithm for Minimum Span Frequency Assignment Problem in Cellular Networks

2006 ◽  
Vol 1 (3) ◽  
pp. 30-35
Author(s):  
Sarath. B. Siyambalapitiya ◽  
2019 ◽  
Vol 10 (3) ◽  
pp. 134-150
Author(s):  
Yasmine Lahsinat ◽  
Dalila Boughaci ◽  
Belaid Benhamou

The minimum interference frequency assignment problem (MI-FAP) plays an important role in cellular networks. MI-FAP is the problem of finding an assignment of a small number of frequencies to a large number of transceivers (TRXs) that minimizes the interferences level. The MI-FAP is known to be NP-Hard, thus it cannot be solved in polynomial time. To remedy this, researchers usually use meta-heuristic techniques to find an approximate solution in reasonable time. Here, the authors propose three meta-heuristics for the MI-FAP: a variable neighborhood search (VNS) and a stochastic local search (SLS) that are combined to obtain a third and a new one, which is called VNS-SLS. The SLS method is incorporated into the VNS process as a subroutine in order to enhance the solution quality. All three proposed methods are evaluated on some well-known datasets to measure their performance. The empirical experiments show that the proposed method VNS-SLS succeeds in finding good results compared to both VNS and SLS confirming a good balance between intensification and diversification.


2010 ◽  
Vol 37 (12) ◽  
pp. 2152-2163 ◽  
Author(s):  
Ayed A. Salman ◽  
Imtiaz Ahmad ◽  
Mahamed G.H. Omran ◽  
Mohammad Gh. Mohammad

10.29007/x3qf ◽  
2019 ◽  
Author(s):  
Sumonta Ghosh ◽  
Prakhar Pogde ◽  
Narayan C. Debnath ◽  
Anita Pal

L(h,k) Labeling in graph came into existence as a solution to frequency assignment problem. To reduce interference a frequency in the form of non negative integers is assigned to each radio or TV transmitters located at various places. After L(h,k) labeling, L(h,k, j) labeling is introduced to reduce noise in the communication network. We investigated the graph obtained by Cartesian Product betweenCompleteBipartiteGraphwithPathandCycle,i. e.,Km,n×Pr andKm,n×Cr byapplying L(3,2,1)Labeling. The L(3,2,1) Labeling of a graph G is the difference between the highest and the lowest labels used in L(3,2,1) and is denoted by λ3,2,1(G) In this paper we have designed three suitable algorithms to label the graphs Km,n × Pr and Km,n × Cr . We have also analyzed the time complexity of each algorithm with illustration.


Sign in / Sign up

Export Citation Format

Share Document