Detection and Location of Faults in Three Phase 11kv Underground Power Cables by Discrete Wavelet Transform (DWT)

2016 ◽  
Vol 3 (4) ◽  
pp. 35-44
Author(s):  
Prabhavathi D. ◽  
◽  
Surya Kalavathi M. ◽  
Prakasam K. ◽  
◽  
...  
2005 ◽  
Vol 152 (1) ◽  
pp. 24-30
Author(s):  
Yoh Yasuda ◽  
Takehisa Hara ◽  
Koji Urano ◽  
Min Chen

Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6540
Author(s):  
Mohammed A. Shams ◽  
Hussein I. Anis ◽  
Mohammed El-Shahat

Online detection of partial discharges (PD) is imperative for condition monitoring of high voltage equipment as well as power cables. However, heavily contaminated sites often burden the signals with various types of noise that can be challenging to remove (denoise). This paper proposes an algorithm based on the maximal overlap discrete wavelet transform (MODWT) to denoise PD signals originating from defects in power cables contaminated with various levels of noises. The three most common noise types, namely, Gaussian white noise (GWN), discrete spectral interference (DSI), and stochastic pulse shaped interference (SPI) are considered. The algorithm is applied to an experimentally acquired void-produced partial discharge in a power cable. The MODWT-based algorithm achieved a good improvement in the signal-to-noise ratio (SNR) and in the normalized correlation coefficient (NCC) for the three types of noises. The MODWT-based algorithm performance was also compared to that of the empirical Bayesian wavelet transform (EBWT) algorithm, in which the former showed superior results in denoising SPI and DSI, as well as comparable results in denoising GWN. Finally, the algorithm performance was tested on a PD signal contaminated with the three type of noises simultaneously in which the results were also superior.


Author(s):  
Bahram Noshad

Abstract One of transient phenomena that lead to the false trip of the power transformer differential protection during the energization of a loaded power transformer is the ultra-saturation phenomenon. This paper presents, at first, a new algorithm for three-phase power transformer differential protection considering effect of the ultra-saturation phenomenon based on Discrete Wavelet Transform (DWT). To model the ultra-saturation phenomenon, the nonlinear characteristic of the transformer core and the effect of the saturation of the current transformers are taken into account. It is assumed that the load of the transformer is a resistive and inductive load. In this algorithm, the ultra-saturation phenomenon, the external and internal faults of power transformer and the magnetic inrush current are simulated. To distinguish between these phenomena, appropriate criteria using DWT by the use of standard deviation of coefficients are presented. Also, one of the most important criteria for the digital relays is the time for making a decision. Thus, to determine the time of decision, the experimental results will be presented.


Sign in / Sign up

Export Citation Format

Share Document