PROPOSAL OF A RACING WHEELCHAIR PARTIALLY BUILT IN ADDITIVE MANUFACTURE

Author(s):  
Thiago Donegá ◽  
Diego Augusto Costa Alves ◽  
Márcio Peres de Souza ◽  
CLEUDMAR ARAÚJO
Keyword(s):  





2018 ◽  
Vol 24 (6) ◽  
pp. 935-944 ◽  
Author(s):  
Mingke Li ◽  
Wangyu Liu

PurposeThe purpose of this paper is to present the novel parameterized digital-mask generation method which is aimed at enhancing bio-scaffold’s fabricating efficiency with digital micro-mirror device (DMD)-based systems.Design/methodology/approachA method to directly generate the digital masks of bio-scaffolds without modeling the entire 3D scaffold models is presented. In most of the conventional methods, it is inefficient to dynamically modify the size of the structural unit cells during design, because it relies more or less on commercial computer aided design (CAD) platforms. The method proposed in this paper can achieve high efficient parameterized design, and it is independent from any CAD platforms. The generated masks in binary bitmap format can be used by the DMD-based to achieve scaffold’s additive manufacture. In conventional methods, the Boolean operation of the external surface and the internal architectures would result in the damage of unit cells in boundary region. These damaged unit cells not only lose its original mechanical property but also cause numbers of gaps and isolated features that would reduce the geometric accuracy of the fabricated scaffolds; the proposed method in this paper provides an approach to tackle this defect.FindingsThe results show that the proposed method can improve the digital masks generation efficiency.Practical implicationsThe proposed method can serve as an effective supplement to the slicing method in additive manufacture. It also provides a way to design and fabricate scaffolds with heterogeneous architectures.Originality/valueThis paper gives supports to fabricate bio-scaffold with DMD-based systems.



Author(s):  
John C. Steuben ◽  
Athanasios P. Iliopoulos ◽  
John G. Michopoulos

Recent years have seen a sharp increase in the development and usage of Additive Manufacturing (AM) technologies for a broad range of scientific and industrial purposes. The drastic microstructural differences between materials produced via AM and conventional methods has motivated the development of computational tools that model and simulate AM processes in order to facilitate their control for the purpose of optimizing the desired outcomes. This paper discusses recent advances in the continuing development of the Multiphysics Discrete Element Method (MDEM) for the simulation of AM processes. This particle-based method elegantly encapsulates the relevant physics of powder-based AM processes. In particular, the enrichment of the underlying constitutive behaviors to include thermoplasticity is discussed, as are methodologies for modeling the melting and re-solidification of the feedstock materials. Algorithmic improvements that increase computational performance are also discussed. The MDEM is demonstrated to enable the simulation of the additive manufacture of macro-scale components. Concluding remarks are given on the tasks required for the future development of the MDEM, and the topic of experimental validation is also discussed.





Author(s):  
Dominic Eggbeer ◽  
Richard Bibb ◽  
Peter Evans ◽  
Lu Ji
Keyword(s):  


2021 ◽  
Author(s):  
Zachary J. Larimore ◽  
Paul E. Parsons ◽  
Austin Good ◽  
Kyle McParland ◽  
Mark Mirotznik


2021 ◽  
Author(s):  
Bill Press ◽  
Adam Dukes ◽  
Dave Poole ◽  
Jack Adams ◽  
Luke Burling ◽  
...  

Abstract The Additive Manufacture (AM) of nuclear plant components, such as small-bore globe valves, offers opportunities to reduce costs and improve production lead-times. Cost reductions can be achieved by reducing raw material quantities, removing machining operations, and eliminating the welding of sub-assemblies. Furthermore, there is the opportunity to reduce production lead-times by simplifying the supply chain, e.g. reducing the number of parts to be sourced and eliminating special operations. Such opportunities are important against a backdrop of industry striving to reduce the cost of nuclear power generation in order to ensure viability with other forms of power generation. However, AM is a relatively new and innovative manufacturing technology, and although now seeing greater use in industry, there are still very few examples of where the technology has been applied to components used in safety critical applications. Furthermore, it is not covered by the American Society of Mechanical Engineers (ASME), Section III, nuclear design code. For nuclear plant applications, it is imperative a robust safety justification is provided. This paper presents Rolls-Royce’s approach to provision of a high integrity safety justification to enable the implementation of AM small-bore globe valves, up to a nominal bore size of 2” to nuclear plant. The material of construction is AM Laser Powder Bed Fusion (LPBF) 316LN stainless steel, with a Hot Isostatic Press (HIP) bonded LPBF Tristelle 5183 low cobalt hard facing seat. The paper describes the structure of the safety justification, which follows a multi-legged approach. It provides an overview of the innovative manufacturing process, which is, to the best of Rolls-Royce’s knowledge, the first of a kind application on nuclear pressure boundary components. The paper provides a summary of the suite of materials testing and metallurgical examinations conducted, and majors on prototype functional and performance testing where comparisons are made with the previous forged form. Pressure testing is covered which includes ultimate pressure testing to 2,000 bar, as well as: functional cyclic testing, hard facing bond strength tests, dynamic loading (shock), and cyclic thermal tests. In all cases the additive manufactured small-bore globe valves performed as well, and in some cases better than the forged material equivalent.



2014 ◽  
Vol 9 (3) ◽  
pp. 195-201 ◽  
Author(s):  
Y.L. Yap ◽  
W.Y. Yeong
Keyword(s):  




Sign in / Sign up

Export Citation Format

Share Document