projection stereolithography
Recently Published Documents


TOTAL DOCUMENTS

73
(FIVE YEARS 30)

H-INDEX

14
(FIVE YEARS 5)

2021 ◽  
pp. 102694
Author(s):  
Yaning Wang ◽  
Ruomeng Chen ◽  
Xu Chen ◽  
Huiwu Hu ◽  
Tengfei Li ◽  
...  

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Xiangquan Wu ◽  
Chunjie Xu ◽  
Zhongming Zhang ◽  
Zhongmin Jin

Purpose This study aims to accurately simulate the tilting separation process of mask projection stereolithography (MPSL) and verify the tilting theory. Design/methodology/approach The finite element separation models of MPSL 3D printing process were established. The established models simulated both tilting and pulling-up separation process by changing the constraints and boundary conditions. The bilinear cohesive curves were used to define the separation interface. The stress distribution of the cured part and FEP film at different times during the whole separation process was extracted. Different orientations of pulling-up and tilting were also compared for stress distribution. The stress change was analyzed for the center and edge points of the upper surface of cured part. Findings The results showed that the stress increased with the separation speed, and the stress at the edge position of exposure area was greater than the internal position. The tilting traction stress distribution was affected by the exposure area function and the velocity distribution. Alternation of the exposure area function changed the cohesive stiffness. The non-coincidence of the calculated traction stress with the input bilinear cohesive curve reflected the influence of the material properties and the separation methods. The high-speed side of tilting had fast separation and high traction stress. Originality/value This study proposes a technical method for simulation tilting separation and verified the tilting theory. The cohesive zone model was proved applicable to the tilting traction stress calculation.


PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0245634
Author(s):  
Ye Zhu ◽  
Daniel Sazer ◽  
Jordan S. Miller ◽  
Aryeh Warmflash

Self-organized patterning of mammalian embryonic stem cells on micropatterned surfaces has previously been established as an in vitro platform for early mammalian developmental studies, complimentary to in vivo studies. Traditional micropatterning methods, such as micro-contact printing (μCP), involve relatively complicated fabrication procedures, which restricts widespread adoption by biologists. Here, we demonstrate a rapid method of micropatterning by printing hydrogel micro-features onto a glass-bottomed culture vessel. The micro-features are printed using a projection stereolithography bioprinter yielding hydrogel structures that geometrically restrict the attachment of cells or proteins. Compared to traditional and physical photomasks, a digitally tunable virtual photomask is used in the projector to generate blue light patterns that enable rapid iteration with minimal cost and effort. We show that a protocol that makes use of this method together with LN521 coating, an extracellular matrix coating, creates a surface suitable for human embryonic stem cell (hESC) attachment and growth with minimal non-specific adhesion. We further demonstrate that self-patterning of hESCs following previously published gastrulation and ectodermal induction protocols achieves results comparable with those obtained with commercially available plates.


2021 ◽  
Vol 27 (3) ◽  
pp. 636-642
Author(s):  
Qin Qin ◽  
Jigang Huang ◽  
Jin Yao ◽  
Wenxiang Gao

Purpose Scanning projection-based stereolithography (SPSL) is a powerful technology for additive manufacturing with high resolution as well as large building area. However, the surface quality of stitching boundary in an SPSL system has been rarely studied, and no positive settlement was proposed to address the poor stitching quality. This paper aims to propose an approach of multi-pass scanning and a compensation algorithm for multi-pass scanning process to address the issue of poor stitching quality in SPSL systems. Design/methodology/approach The process of multi-pass scanning is realized by scanning regions repeatedly, and the regions can be cured simultaneously because of the very short repeat exposure time and very fast scanning. Then, the poor stitching quality caused by the non-simultaneous curing can be eliminated. Also, a compensation algorithm is designed for multi-pass scanning to reduce the stitching errors. The validity of multi-pass scanning is verified by curing depth test, while the performance of multi-pass scanning as well as proposed compensation algorithm is demonstrated by comparing with that of a previous SPSL system. Findings The results lead to a conclusion that multi-pass scanning with its compensation algorithm is an effective approach to improve the stitching quality of an SPSL system. Practical implications This study can provide advice for researchers to achieve the satisfactory surface finish with SPSL technology. Originality/value The authors proposed a process of multi-pass scanning as well as a compensation algorithm for SPSL additive manufacturing (system to improve the stitching quality, which has rarely been studied in previous work.


2021 ◽  
Vol 113 (9-10) ◽  
pp. 3011-3026
Author(s):  
Tao Deng ◽  
Wangyu Liu ◽  
Weigui Xie ◽  
Jiale Huang ◽  
Aimin Tang

2021 ◽  
Author(s):  
Ye Zhu ◽  
Daniel Sazer ◽  
Jordan Miller ◽  
Aryeh Warmflash

AbstractSelf-organized patterning of mammalian embryonic stem cells on micropatterned surfaces has previously been established as an in vitro platform for early mammalian developmental studies, complimentary to in vivo studies. Traditional micropatterning methods, such as micro-contact printing (μCP), involve relatively complicated fabrication procedures, which restricts widespread adoption by biologists. Here, we demonstrate a rapid method of micropatterning by printing hydrogel micro-features onto a glass-bottomed culture vessel. The micro-features are printed using a projection stereolithography bioprinter yielding hydrogel structures that geometrically restrict the attachment of cells or protein. Compared to traditional, physical photomasks, a digitally tunable virtual photomask is used in the projector to generate blue light patterns that enable rapid iteration with minimal cost and effort. We show that a protocol that makes use of this method together with LN521 coating creates a surface suitable for human embryonic stem cell (hESC) attachment and growth with minimal non-specific adhesion. We further demonstrate that self-patterning of hESCs following previously published gastrulation and ectodermal induction protocols achieves results comparable with those obtained with commercially available plates (CYTOO).


Sign in / Sign up

Export Citation Format

Share Document