CFD SIMULATION OF ISOTHERMAL UPWARD TWO-PHASE FLOW IN A VERTICAL TUBE OF ANNULAR SECTION

Author(s):  
Flavio Ceravolo ◽  
Marcelo da Silva Rocha ◽  
Delvonei Andrade
2014 ◽  
Vol 568-570 ◽  
pp. 363-369
Author(s):  
Li Li Pang ◽  
Han Chuan Dong ◽  
Yun Shi ◽  
Li De Fang

The gas-liquid two-phase flow exists widely in nature and in our daily life, to realize the phase flow does not separate online measurement has become an important subject in the study. Through CFD simulation experiment, the optimal structure of inner and outer tube differential pressure flowmeter prototype. Through the analysis of the experimental data, comparison of the classical theoretical models found high Chishlom prediction model error is minimum. Moisture the modified model, the relative error of measurement is better than in the range of experiment 5%.


2011 ◽  
Vol 54 (15-16) ◽  
pp. 3740-3748 ◽  
Author(s):  
Chii-Dong Ho ◽  
Hsuan Chang ◽  
Hsi-Jen Chen ◽  
Cheng-Liang Chang ◽  
Hsieh-Hsung Li ◽  
...  

Author(s):  
Sanna Haavisto ◽  
Jouni Syrjanen ◽  
Antti Koponen ◽  
Mikko Manninen

2011 ◽  
Vol 418-420 ◽  
pp. 2006-2011
Author(s):  
Rui Zhang ◽  
Cheng Jian Sun ◽  
Yue Wang

CFD simulation and PIV test technology provide effective solution for revealing the complex flow of hydrodynamic coupling’s internal flow field. Some articles reported that the combination of CFD simulation and PIV test can be used for analyzing the internal flow field of coupling, and such analysis focuses on one-phase flow. However, most internal flow field of coupling are gas-fluid two-phase flow under the real operation conditions. In order to reflect the gas-fluid two-phase flow of coupling objectively, CFD three-dimensional numerical simulation is conducted under two typical operation conditions. In addition, modern two-dimensional PIV technology is used to test the two-phase flow. This method of combining experiments and simulation presents the characteristics of the flow field when charging ratios are different.


2009 ◽  
Vol 2009 ◽  
pp. 1-12 ◽  
Author(s):  
E. Krepper ◽  
P. Ruyer ◽  
M. Beyer ◽  
D. Lucas ◽  
H.-M. Prasser ◽  
...  

This paper concerns the model of a polydispersed bubble population in the frame of an ensemble averaged two-phase flow formulation. The ability of the moment density approach to represent bubble population size distribution within a multi-dimensional CFD code based on the two-fluid model is studied. Two different methods describing the polydispersion are presented: (i) a moment density method, developed at IRSN, to model the bubble size distribution function and (ii) a population balance method considering several different velocity fields of the gaseous phase. The first method is implemented in the Neptune_CFD code, whereas the second method is implemented in the CFD code ANSYS/CFX. Both methods consider coalescence and breakup phenomena and momentum interphase transfers related to drag and lift forces. Air-water bubbly flows in a vertical pipe with obstacle of the TOPFLOW experiments series performed at FZD are then used as simulations test cases. The numerical results, obtained with Neptune_CFD and with ANSYS/CFX, allow attesting the validity of the approaches. Perspectives concerning the improvement of the models, their validation, as well as the extension of their applicability range are discussed.


Sign in / Sign up

Export Citation Format

Share Document