A REVIEW OF FAILURE MECHANISMS OF COMPOSITE LAMINATES UNDER QUASI-STATIC AND FATIGUE LOADS FOR AERONAUTICAL STRUCTURAL PURPOSES.

Author(s):  
Jose Fernando Cardenas Barbosa ◽  
Volnei Tita ◽  
Marcelo Leite Ribeiro
Author(s):  
Yasir Baig ◽  
Xiaoquan Cheng ◽  
Hasan Junaid Hasham ◽  
Musharaf Abbas ◽  
Wajid Ali Khan

2012 ◽  
Vol 116 (1186) ◽  
pp. 1349-1365 ◽  
Author(s):  
R. Olsson

AbstractThis paper reviews findings on the type, morphology and constitutive behaviour of impact damage zones during loading after impact and their effect on the laminate strength and stability. The paper is limited to tape prepreg based monolithic laminates, although some similarities exist with impact damage in textile based laminates. Damage zones have a complex geometry with several damage types, which results in an interaction and competition between different failure mechanisms, e.g. local and global buckling, compressive failure, and delamination growth. Hence, simplified damage models may provide incorrect predictions of the failure load and failure mechanisms after impact. The constitutive behaviour of damage zones has been studied experimentally in tension and compression using an inverse method, and the results have been compared with detailed FE models of a generic impact damage. The paper is concluded with a discussion on analytical and computational models to predict the resulting strength of impacted laminates.


1994 ◽  
Vol 116 (2) ◽  
pp. 222-232 ◽  
Author(s):  
M. Karayaka ◽  
P. Kurath

Conceptually, fabric composites have some structural advantages over conventional laminates. However, deformation and failure analyses become more complex with the additional anisotropy introduced by the weaving geometry. A micromechanistic deformation model, that could realistically be incorporated into structural finite element codes, is proposed where loading direction and weave parameters are allowed to vary. Comparisons are made to previous models and experimental results for woven materials, indicating that the proposed model provides improved estimates for the linear elastic stiffness. The model further provides predictions for internal stresses in the longitudinal, transverse, and interlace regions of the woven laminate which qualitatively correspond to the experimentally observed failure mechanisms. The experimental program investigates deformations behavior and failure mechanisms of 5-harness 0/90 weave Graphite/Epoxy laminates under tension, compression, and 3-point and 4-point bending loading. Under these conditions the woven laminates exhibit orientation dependent mechanical properties and strength.


Sign in / Sign up

Export Citation Format

Share Document