scholarly journals Slow slip on the northern Hikurangi subduction interface, New Zealand

2021 ◽  
Author(s):  
A Douglas ◽  
J Beavan ◽  
L Wallace ◽  
John Townend

In October 2002, a surface displacement episode of 20-30 mm magnitude was observed over a ∼10 day period on two continuous Global Positioning System (GPS) instruments near Gisborne, North Island, New Zealand. We interpret this to result from slow slip on the northern Hikurangi subduction interface. Using ten years of regional campaign GPS (1995-2004) and recent continuous GPS data, we estimate the recurrence interval for similar events to be 2-3 yrs. In November 2004, a similar slow slip event occurred within this recurrence period. The 2002 event can be modeled by ∼18 cm of slow slip near the down-dip end of the seismogenic zone on the subduction interface offshore of Gisborne. The campaign GPS data show that the 2002 slow slip event had little effect on regional strain patterns. Copyright 2005 by the American Geophysical Union.

2021 ◽  
Author(s):  
A Douglas ◽  
J Beavan ◽  
L Wallace ◽  
John Townend

In October 2002, a surface displacement episode of 20-30 mm magnitude was observed over a ∼10 day period on two continuous Global Positioning System (GPS) instruments near Gisborne, North Island, New Zealand. We interpret this to result from slow slip on the northern Hikurangi subduction interface. Using ten years of regional campaign GPS (1995-2004) and recent continuous GPS data, we estimate the recurrence interval for similar events to be 2-3 yrs. In November 2004, a similar slow slip event occurred within this recurrence period. The 2002 event can be modeled by ∼18 cm of slow slip near the down-dip end of the seismogenic zone on the subduction interface offshore of Gisborne. The campaign GPS data show that the 2002 slow slip event had little effect on regional strain patterns. Copyright 2005 by the American Geophysical Union.


2019 ◽  
Vol 124 (5) ◽  
pp. 4751-4766 ◽  
Author(s):  
J. Yarce ◽  
A. F. Sheehan ◽  
J. S. Nakai ◽  
S. Y. Schwartz ◽  
K. Mochizuki ◽  
...  

2004 ◽  
Vol 31 (5) ◽  
pp. n/a-n/a ◽  
Author(s):  
Tamao Sato ◽  
Kazutoshi Imanishi ◽  
Naoyuki Kato ◽  
Takeshi Sagiya

Author(s):  
J Tago ◽  
V M Cruz-Atienza ◽  
C Villafuerte ◽  
T Nishimura ◽  
V Kostoglodov ◽  
...  

Summary To shed light on the prevalently slow, aseismic slip interaction between tectonic plates, we developed a new static slip inversion strategy, the ELADIN (ELastostatic ADjoint INversion) method, that uses the adjoint elastostatic equations to compute the gradient of the cost function. ELADIN is a 2-step inversion algorithm to efficiently handle plausible slip constraints. First it finds the slip that best explains the data without any constraint, and then refines the solution by imposing the constraints through a Gradient Projection Method. To obtain a selfsimilar, physically-consistent slip distribution that accounts for sparsity and uncertainty in the data, ELADIN reduces the model space by using a von Karman regularization function that controls the wavenumber content of the solution, and weights the observations according to their covariance using the data precision matrix. Since crustal deformation is the result of different concomitant interactions at the plate interface, ELADIN simultaneously determines the regions of the interface subject to both stressing (i.e., coupling) and relaxing slip regimes. For estimating the resolution, we introduce a mobile checkerboard analysis that allows to determine lower-bound fault resolution zones for an expected slip-patch size and a given stations array. We systematically test ELADIN with synthetic inversions along the whole Mexican subduction zone and use it to invert the 2006 Guerrero Slow Slip Event (SSE), which is one of the most studied SSEs in Mexico. Since only 12 GPS stations recorded the event, careful regularization is thus required to achieve reliable solutions. We compared our preferred slip solution with two previously published models and found that our solution retains their most reliable features. In addition, although all three SSE models predict an upward slip penetration invading the seismogenic zone of the Guerrero seismic gap, our resolution analysis indicates that this penetration might not be a reliable feature of the 2006 SSE.


Sign in / Sign up

Export Citation Format

Share Document