scholarly journals Experimental Study on the Performance of Rate Adaptation Algorithm in IEEE 802.11g Networks

2021 ◽  
Author(s):  
◽  
Dong Xia

<p>IEEE 802.11 technology provides a low-cost wireless networking solution. In the last few years, we have seen that the demand for high-bandwidth wireless local area networks increases rapidly, due to the proliferation of mobile devices such as laptops, smart phones and tablet PCs. This has driven the widespread deployment of IEEE 802.11 wireless networks to provide Internet access. However, wireless networks present their own unique problems. Wireless channel is extremely variable and can be affected by a number of different factors, such as collisions, multipath fading and signal attenuation. As such, rate adaptation algorithm is a key component of IEEE 802.11 standard which is used to vary the transmission data rate to match the wireless channel conditions, in order to achieve the best possible performance. Rate adaptation algorithm studies and evaluations are always hot research topics. However, despite its popularity, little work has been done on evaluating the performance of rate adaptation algorithms by comparing the throughput of the algorithm with the throughput of the fixed rates. This thesis presents an experimental study that compares the performance ofMikroTik rate adaptation algorithm andMinstrel rate adaptation algorithm against fixed rates in an IEEE 802.11g network. MikroTik and Minstrel rate adaptation algorithm are most commonly used algorithm around the world. All experiments are conducted in a real world environment in this thesis. In a real world environment, wireless channel conditions are not tightly being controlled, and it is extremely vulnerable to interference of surrounding environment. The dynamic changes of wireless channel conditions have a considerable effect on the performance of rate adaptation algorithms. The main challenge of evaluating a rate adaptation algorithm in a real world environment is getting different experiment behaviours from the same experiment. Experiment results may indicate many different behaviours which due to the leak of wireless environment controlling. Having a final conclusion from those experiment results can be a challenge task. In order to perform a comprehensive rate adaptation algorithm evaluation. All experiments run 20 times for 60 seconds. The average result and stand deviation is calculated. We also design and implement an automation experiment controlling program to help us maintain that each run of experiment is following exactly the same procedures. In MikroTik rate adaptation algorithm evaluation, the results show in many cases that fixed rate outperforms rate adaptation. Our findings raise questions regarding the suitability of the adopted rate adaptation algorithm in typical indoor environments. Furthermore, our study indicates that it is not wise to simply ignore fixed rate. A fine selection of a fixed rate could be made to achieve desired performance. The result ofMinstrel rate adaptation evaluation show that whilst Minstrel performs reasonably well in static wireless channel conditions, in some cases the algorithm has difficulty selecting the optimal data rate in the presence of dynamic channel conditions. In addition, Minstrel performs well when the channel condition improves frombad quality to good quality. However, Minstrel has trouble selecting the optimal rate when the channel condition deteriorates from good quality to bad quality. By comparing the experimental results between the performance of rate adaptation algorithms and the performance of fixed data rate against different factors, the experiment results directly pointed out the weakness of these two rate adaptation algorithms. Our findings from both experiments provide useful information on the design of rate adaptation algorithms.</p>

2021 ◽  
Author(s):  
◽  
Dong Xia

<p>IEEE 802.11 technology provides a low-cost wireless networking solution. In the last few years, we have seen that the demand for high-bandwidth wireless local area networks increases rapidly, due to the proliferation of mobile devices such as laptops, smart phones and tablet PCs. This has driven the widespread deployment of IEEE 802.11 wireless networks to provide Internet access. However, wireless networks present their own unique problems. Wireless channel is extremely variable and can be affected by a number of different factors, such as collisions, multipath fading and signal attenuation. As such, rate adaptation algorithm is a key component of IEEE 802.11 standard which is used to vary the transmission data rate to match the wireless channel conditions, in order to achieve the best possible performance. Rate adaptation algorithm studies and evaluations are always hot research topics. However, despite its popularity, little work has been done on evaluating the performance of rate adaptation algorithms by comparing the throughput of the algorithm with the throughput of the fixed rates. This thesis presents an experimental study that compares the performance ofMikroTik rate adaptation algorithm andMinstrel rate adaptation algorithm against fixed rates in an IEEE 802.11g network. MikroTik and Minstrel rate adaptation algorithm are most commonly used algorithm around the world. All experiments are conducted in a real world environment in this thesis. In a real world environment, wireless channel conditions are not tightly being controlled, and it is extremely vulnerable to interference of surrounding environment. The dynamic changes of wireless channel conditions have a considerable effect on the performance of rate adaptation algorithms. The main challenge of evaluating a rate adaptation algorithm in a real world environment is getting different experiment behaviours from the same experiment. Experiment results may indicate many different behaviours which due to the leak of wireless environment controlling. Having a final conclusion from those experiment results can be a challenge task. In order to perform a comprehensive rate adaptation algorithm evaluation. All experiments run 20 times for 60 seconds. The average result and stand deviation is calculated. We also design and implement an automation experiment controlling program to help us maintain that each run of experiment is following exactly the same procedures. In MikroTik rate adaptation algorithm evaluation, the results show in many cases that fixed rate outperforms rate adaptation. Our findings raise questions regarding the suitability of the adopted rate adaptation algorithm in typical indoor environments. Furthermore, our study indicates that it is not wise to simply ignore fixed rate. A fine selection of a fixed rate could be made to achieve desired performance. The result ofMinstrel rate adaptation evaluation show that whilst Minstrel performs reasonably well in static wireless channel conditions, in some cases the algorithm has difficulty selecting the optimal data rate in the presence of dynamic channel conditions. In addition, Minstrel performs well when the channel condition improves frombad quality to good quality. However, Minstrel has trouble selecting the optimal rate when the channel condition deteriorates from good quality to bad quality. By comparing the experimental results between the performance of rate adaptation algorithms and the performance of fixed data rate against different factors, the experiment results directly pointed out the weakness of these two rate adaptation algorithms. Our findings from both experiments provide useful information on the design of rate adaptation algorithms.</p>


2021 ◽  
Author(s):  
Arkadeep Sen ◽  
Krishna Sivalingam

<div>Rate adaptation (RA) is used in IEEE 802.11 WLANs to determine the optimal datarate for a particular channel condition. It becomes especially difficult to determine the optimal datarate for the new High-Throughput WLANs (802.11ac/ax) since the number of available datarates in these standards are very high. Moreover, a mobile environment poses additional challenge in RA as the channel conditions will keep on changing from time to time. In this paper, we propose a Contextual Bandits based Rate Adaptation (ContRA) algorithm for mobile users in IEEE 802.11ac/ax standards. Based on the Received Signal Strength Indicator (RSSI) range that the receiver is currently in, the RA algorithm tries to determine the optimal rate from the rate set suitable for packet transmission in that RSSI range. Performance studies show that the proposed RA algorithm is able to adapt to changing channel conditions and quickly choose a suitable datarate for those channel conditions.</div>


2021 ◽  
Author(s):  
Arkadeep Sen ◽  
Krishna Sivalingam

<div>Rate adaptation (RA) is used in IEEE 802.11 WLANs to determine the optimal datarate for a particular channel condition. It becomes especially difficult to determine the optimal datarate for the new High-Throughput WLANs (802.11ac/ax) since the number of available datarates in these standards are very high. Moreover, a mobile environment poses additional challenge in RA as the channel conditions will keep on changing from time to time. In this paper, we propose a Contextual Bandits based Rate Adaptation (ContRA) algorithm for mobile users in IEEE 802.11ac/ax standards. Based on the Received Signal Strength Indicator (RSSI) range that the receiver is currently in, the RA algorithm tries to determine the optimal rate from the rate set suitable for packet transmission in that RSSI range. Performance studies show that the proposed RA algorithm is able to adapt to changing channel conditions and quickly choose a suitable datarate for those channel conditions.</div>


Electronics ◽  
2019 ◽  
Vol 8 (6) ◽  
pp. 658
Author(s):  
Zuhaibuddin Bhutto ◽  
Wonyong Yoon

In this paper, we analyze the performance of a dual-hop cooperative decode-and-forward (DF) relaying system with beamforming under different adaptive transmission techniques over κ − μ shadowed fading channels. We consider multiple antennas at the source and destination, and communication takes place via a single antenna relay. The published work in the literature emphasized the performance analysis of dual-hop DF relaying systems, in conjunction with different adaptive transmission techniques for classical fading channels. However, in a real scenario, shadowing of the line-of-sight (LoS) signal is caused by complete or partially blockage of the LoS by environmental factors such as trees, buildings, mountains, etc., therefore, transmission links may suffer from fading as well as shadowing, either concurrently or separately. Hence, the κ − μ shadowed fading model was introduced to emulate such general channel conditions. The κ − μ shadowed fading model is a general fading model that can perfectly model the fading and shadowing effects of the wireless channel in a LoS propagation environment, and it includes some classical fading models as special cases, such as κ − μ , Rician, Rician-shadowed, Nakagami- m ^ , One-sided Gaussian, and Rayleigh fading. In this work, we derive the outage probability and average capacity expressions in an analytical form for different adaptive transmission techniques: (1) optimal power and rate adaptation (OPRA); (2) optimal rate adaptation and constant transmit power (ORA); (3) channel inversion with a fixed rate (CIFR); and (4) truncated channel inversion with a fixed rate (TIFR). We evaluate the system performance for different arrangements of antennas and for different fading and shadowing parameters. The obtained analytical expressions are verified through extensive Monte Carlo simulations.


2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Tingpei Huang ◽  
Shibao Li ◽  
Xiaoxuan Lu ◽  
Shaoshu Gao

Rate adaptation, which dynamically chooses transmission rate provided at the physical layer according to the current channel conditions, is a fundamental resource management issue in IEEE 802.11 networks with the goal of maximizing the network throughput. Traditional rate adaptation algorithms for IEEE 802.11n networks do not consider the interference problem, which becomes much more serious due to the rapid deployment of IEEE 802.11n devices and large number of mobile terminals. In this paper, an interference-aware rate and channel adaptation scheme RaCA for intensive IEEE 802.11n networks was proposed. Firstly, RaCA leverages RSSI and CSI information together to measure the current channel conditions at the receiver side. RSSI is a coarse-grained indicator and CSI is a fine-grained indicator. Secondly, a two-stage rate adaptation scheme TSRA was designed, which can quickly adapt to optimal bit rate based on RSSI and CSI information. Finally, a quorum-based channel adaptation algorithm QCA was proposed, which does not need control channel. If channel suffers severe interferences, RaCA calls QCA to choose another channel to work on. Simulation and testbed implementation results demonstrate that RaCA achieves significant throughput gain over SampleLite and Minstrel-HT.


IET Networks ◽  
2015 ◽  
Vol 4 (2) ◽  
pp. 111-118 ◽  
Author(s):  
Ayoade Ilori ◽  
Zuoyin Tang ◽  
Jianhua He ◽  
Yue Li

2011 ◽  
Vol 15 (5) ◽  
pp. 524-526 ◽  
Author(s):  
Jianhua He ◽  
Wenyang Guan ◽  
Lin Bai ◽  
Kai Chen

Sign in / Sign up

Export Citation Format

Share Document