scholarly journals Electronic properties of the topological insulators Bi₂Se₃ and Bi₂Te₃

2021 ◽  
Author(s):  
◽  
Robin Gühne

<p>The three-dimensional topological insulators Bi₂Se₃ and Bi₂Te₃ are model systems of a new class of materials with an insulating bulk and gapless surface states. Their small band gaps and the heavy elements are essential for the topologically non-trivial band structure, but these features are similarly responsible for other remarkable properties, such as their high thermoelectric performance.  This thesis investigates the electronic properties of the topological insulators Bi₂Se₃ and Bi₂Te₃ with a broad range of experimental methods. Ferromagnetism in Mn doped Bi₂Te₃ is shown to disappear under sample sintering. A surprisingly large magnetoresistance and a charge carrier independent change in the sign of the thermopower with increasing Mn content are discussed.¹²⁵Te nuclear magnetic resonance (NMR) of Bi₂Te₃ single crystals suggest an unusual electronic spin susceptibility and complex NMR shifts. The quadrupole interaction of ²⁰⁹Bi nuclei in Bi₂Se₃ single crystals is shown to be a signature of the band inversion in quantitative agreement with first-principle calculations. Furthermore, it is proposed that the strong spin-orbit coupling of conduction electrons causes a non-trivial orientation dependent quadrupole splitting of the ²⁰⁹Bi resonance.</p>

2021 ◽  
Author(s):  
◽  
Robin Gühne

<p>The three-dimensional topological insulators Bi₂Se₃ and Bi₂Te₃ are model systems of a new class of materials with an insulating bulk and gapless surface states. Their small band gaps and the heavy elements are essential for the topologically non-trivial band structure, but these features are similarly responsible for other remarkable properties, such as their high thermoelectric performance.  This thesis investigates the electronic properties of the topological insulators Bi₂Se₃ and Bi₂Te₃ with a broad range of experimental methods. Ferromagnetism in Mn doped Bi₂Te₃ is shown to disappear under sample sintering. A surprisingly large magnetoresistance and a charge carrier independent change in the sign of the thermopower with increasing Mn content are discussed.¹²⁵Te nuclear magnetic resonance (NMR) of Bi₂Te₃ single crystals suggest an unusual electronic spin susceptibility and complex NMR shifts. The quadrupole interaction of ²⁰⁹Bi nuclei in Bi₂Se₃ single crystals is shown to be a signature of the band inversion in quantitative agreement with first-principle calculations. Furthermore, it is proposed that the strong spin-orbit coupling of conduction electrons causes a non-trivial orientation dependent quadrupole splitting of the ²⁰⁹Bi resonance.</p>


2020 ◽  
Vol 116 (14) ◽  
pp. 141603
Author(s):  
Jinling Yu ◽  
Wenyi Wu ◽  
Yumeng Wang ◽  
Kejing Zhu ◽  
Xiaolin Zeng ◽  
...  

SPIN ◽  
2016 ◽  
Vol 06 (02) ◽  
pp. 1640001 ◽  
Author(s):  
Yabin Fan ◽  
Kang L. Wang

Spintronics using topological insulators (TIs) as strong spin–orbit coupling (SOC) materials have emerged and shown rapid progress in the past few years. Different from traditional heavy metals, TIs exhibit very strong SOC and nontrivial topological surface states that originate in the bulk band topology order, which can provide very efficient means to manipulate adjacent magnetic materials when passing a charge current through them. In this paper, we review the recent progress in the TI-based magnetic spintronics research field. In particular, we focus on the spin–orbit torque (SOT)-induced magnetization switching in the magnetic TI structures, spin–torque ferromagnetic resonance (ST-FMR) measurements in the TI/ferromagnet structures, spin pumping and spin injection effects in the TI/magnet structures, as well as the electrical detection of the surface spin-polarized current in TIs. Finally, we discuss the challenges and opportunities in the TI-based spintronics field and its potential applications in ultralow power dissipation spintronic memory and logic devices.


2015 ◽  
Vol 115 (1) ◽  
Author(s):  
Titus Neupert ◽  
Stephan Rachel ◽  
Ronny Thomale ◽  
Martin Greiter

Sign in / Sign up

Export Citation Format

Share Document