Electronic properties of two- and three-dimensional quasicrystalline model systems in a magnetic field

1997 ◽  
Vol 56 (13) ◽  
pp. 8026-8031 ◽  
Author(s):  
H. Schwabe ◽  
G. Kasner ◽  
H. Böttger
2021 ◽  
Author(s):  
◽  
Robin Gühne

<p>The three-dimensional topological insulators Bi₂Se₃ and Bi₂Te₃ are model systems of a new class of materials with an insulating bulk and gapless surface states. Their small band gaps and the heavy elements are essential for the topologically non-trivial band structure, but these features are similarly responsible for other remarkable properties, such as their high thermoelectric performance.  This thesis investigates the electronic properties of the topological insulators Bi₂Se₃ and Bi₂Te₃ with a broad range of experimental methods. Ferromagnetism in Mn doped Bi₂Te₃ is shown to disappear under sample sintering. A surprisingly large magnetoresistance and a charge carrier independent change in the sign of the thermopower with increasing Mn content are discussed.¹²⁵Te nuclear magnetic resonance (NMR) of Bi₂Te₃ single crystals suggest an unusual electronic spin susceptibility and complex NMR shifts. The quadrupole interaction of ²⁰⁹Bi nuclei in Bi₂Se₃ single crystals is shown to be a signature of the band inversion in quantitative agreement with first-principle calculations. Furthermore, it is proposed that the strong spin-orbit coupling of conduction electrons causes a non-trivial orientation dependent quadrupole splitting of the ²⁰⁹Bi resonance.</p>


2021 ◽  
Author(s):  
◽  
Robin Gühne

<p>The three-dimensional topological insulators Bi₂Se₃ and Bi₂Te₃ are model systems of a new class of materials with an insulating bulk and gapless surface states. Their small band gaps and the heavy elements are essential for the topologically non-trivial band structure, but these features are similarly responsible for other remarkable properties, such as their high thermoelectric performance.  This thesis investigates the electronic properties of the topological insulators Bi₂Se₃ and Bi₂Te₃ with a broad range of experimental methods. Ferromagnetism in Mn doped Bi₂Te₃ is shown to disappear under sample sintering. A surprisingly large magnetoresistance and a charge carrier independent change in the sign of the thermopower with increasing Mn content are discussed.¹²⁵Te nuclear magnetic resonance (NMR) of Bi₂Te₃ single crystals suggest an unusual electronic spin susceptibility and complex NMR shifts. The quadrupole interaction of ²⁰⁹Bi nuclei in Bi₂Se₃ single crystals is shown to be a signature of the band inversion in quantitative agreement with first-principle calculations. Furthermore, it is proposed that the strong spin-orbit coupling of conduction electrons causes a non-trivial orientation dependent quadrupole splitting of the ²⁰⁹Bi resonance.</p>


2019 ◽  
Author(s):  
Yachu Du ◽  
Kyle Plunkett

We show that polycyclic aromatic hydrocarbon (PAH) chromophores that are linked between two five-membered rings can access planarized structures with reduced optical gaps and redox potentials. Two aceanthrylene chromophores were connected into dimer model systems with the chromophores either projected outward (2,2’-biaceanthrylene) or inward (1,1’-biaceanthrylene) and the optical and electronic properties were compared. Only the planar 2,2’-biaceanthrylene system showed significant reductions of the optical gaps (1 eV) and redox potentials in relation to the aceanthrylene monomer.<br>


2019 ◽  
Author(s):  
Yachu Du ◽  
Kyle Plunkett

We show that polycyclic aromatic hydrocarbon (PAH) chromophores that are linked between two five-membered rings can access planarized structures with reduced optical gaps and redox potentials. Two aceanthrylene chromophores were connected into dimer model systems with the chromophores either projected outward (2,2’-biaceanthrylene) or inward (1,1’-biaceanthrylene) and the optical and electronic properties were compared. Only the planar 2,2’-biaceanthrylene system showed significant reductions of the optical gaps (1 eV) and redox potentials in relation to the aceanthrylene monomer.<br>


Author(s):  
Serge Reynaud ◽  
Astrid Lambrecht

The Casimir force is an effect of quantum vacuum field fluctuations, with applications in many domains of physics. The ideal expression obtained by Casimir, valid for perfect plane mirrors at zero temperature, has to be modified to take into account the effects of the optical properties of mirrors, thermal fluctuations, and geometry. After a general introduction to the Casimir force and a description of the current state of the art for Casimir force measurements and their comparison with theory, this chapter presents pedagogical treatments of the main features of the theory of Casimir forces for one-dimensional model systems and for mirrors in three-dimensional space.


Heat Transfer ◽  
2021 ◽  
Author(s):  
Hafiz Abdul Wahab ◽  
Syed Zahir Hussain Shah ◽  
Assad Ayub ◽  
Zulqurnain Sabir ◽  
Muhammad Bilal ◽  
...  

Author(s):  
Venkatesh Puneeth ◽  
Sarpabhushana Manjunatha ◽  
Bijjanal Jayanna Gireesha ◽  
Rama Subba Reddy Gorla

The induced magnetic field for three-dimensional bio-convective flow of Casson nanofluid containing gyrotactic microorganisms along a vertical stretching sheet is investigated. The movement of these microorganisms cause bioconvection and they act as bio-active mixers that help in stabilising the nanoparticles in the suspension. The two forces, Thermophoresis and Brownian motion are incorporated in the Mathematical model along with Stefan blowing. The resulting model is transformed to ordinary differential equations using similarity transformations and are solved using [Formula: see text] method. The Velocity, Induced Magnetic field, Temperature, Concentration of Nanoparticles, and Motile density profiles are interpreted graphically. It is observed that the Casson parameter decreases the flow velocity and enhances the temperature, concentration, and motile density profiles and also it is noticed that the blowing enhances the nanofluid profiles whereas, suction diminishes the nanofluid profiles. On the other hand, it is perceived that the rate of heat conduction is enhanced with Thermophoresis and Brownian motion.


Sign in / Sign up

Export Citation Format

Share Document