scholarly journals Existence and Convergence Theorems For Best Proximity Points of Proximal Multi-Valued Nonexpansive Mappings

Author(s):  
Panitarn Sarnmeta ◽  
Suthep Suantai
2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Moosa Gabeleh ◽  
Naseer Shahzad

The aim of this paper is to prove some best proximity point theorems for new classes of cyclic mappings, called pointwise cyclic orbital contractions and asymptotic pointwise cyclic orbital contractions. We also prove a convergence theorem of best proximity point for relatively nonexpansive mappings in uniformly convex Banach spaces.


2021 ◽  
Vol 37 (3) ◽  
pp. 513-527
Author(s):  
JENJIRA PUIWONG ◽  
◽  
SATIT SAEJUNG ◽  
◽  

We prove ∆-convergence and strong convergence theorems of an iterative sequence generated by the Ishikawa’s method to a fixed point of a single-valued quasi-nonexpansive mappings in p-uniformly convex metric spaces without assuming the metric convexity assumption. As a consequence of our single-valued version, we obtain a result for multi-valued mappings by showing that every multi-valued quasi-nonexpansive mapping taking compact values admits a quasi-nonexpansive selection whose fixed-point set of the selection is equal to the strict fixed-point set of the multi-valued mapping. In particular, we immediately obtain all of the convergence theorems of Laokul and Panyanak [Laokul, T.; Panyanak, B. A generalization of the (CN) inequality and its applications. Carpathian J. Math. 36 (2020), no. 1, 81–90] and we show that some of their assumptions are superfluous.


Sign in / Sign up

Export Citation Format

Share Document