Correlations between the elemental composition of grapes, soils of the viticultural area and wine

2021 ◽  
Vol 87 (11) ◽  
pp. 11-18
Author(s):  
Z. A. Temerdashev ◽  
A. G. Abakumov ◽  
A. A. Khalafyan ◽  
N. M. Ageeva

Study of the elemental composition of the soil-grape-wine chain and correlation relationships between the chain links is presented. The objects of the study were grapes of the Muscat, Cabernet and Merlot varieties, wine samples produced from them and soils of the viticultural areas. Concentrations of Li, Mg, Al, K, Ca, V, Mn, Fe, Ni, Co, Cu, Zn, Rb, Cd, Pb, Ba, Na, Ti and Sr in soils, grapes and wines were determined by inductively coupled plasma atomic emission spectrometry (ICP-AES). Relationships between the elemental composition of the objects under study were assessed by statistical modelling using the STATISTICA software. The character of metal distribution in the soil-grape chain was studied for three forms of the element extraction from soils. We determined their gross content, the content of acid-soluble and mobile forms. The degree of absorption of mobile forms of metals by grapes was estimated using «biological absorption coefficient»., Values of the biological absorption coefficient (BAC) of different metals depend on the grape variety. High BAC values are observed for Rb, Ti, Mg, Zn, Cu, Na, Fe, Al, and Sr in Merlot grapes; K, Pbm and Ni in Muscat; and for V and Mn in Cabernet. The lowest BAC values were observed for Co, Ba, and Ca in all grape varieties under study. Each grape variety formed its own individual elemental image due to the different nature of absorption of the studied metals. The transfer of metals from grape to wine for all considered varieties was accompanied by a decrease in the concentrations of Mg, Al, K, Ca, Mn, Ni, Cu, Zn, Rb, Ba, Ti, and Sr and by an increase in the content of V, Fe, Co, Pb, and Na. Discriminant analysis revealed the metals with the highest identification properties, considering their form present in the soil. The results obtained can be used when setting markers determining the varietal and regional origin of wines.

2020 ◽  
Vol 86 (5) ◽  
pp. 16-21
Author(s):  
T. A. Karimova ◽  
G. L. Buchbinder ◽  
S. V. Kachin

Calibration by the concentration ratio provides better metrological characteristics compared to other calibration modes when using the inductively coupled plasma atomic emission spectrometry (ICP-AES) for analysis of geological samples and technical materials on their base. The main reasons for the observed improvement are: i) elimination of the calibration error of measuring vessels and the error of weighing samples of the analyzed materials from the total error of the analysis; ii) high intensity of the lines of base element; and iii) higher accuracy of measuring the ratio of intensities compared to that of measuring the absolute intensities. Calcium oxide is better suited as a base when using calibration by the concentration ratio in analysis of carbonate rocks, technical materials, slags containing less than 20% SiO2 and more than 20% CaO. An equation is derived to calculate the content of components determined in carbonate materials when using calibration by the concentration ratio. A method of ICP-AES with calibration by the concentration ratio is developed for determination of CaO (in the range of contents 20 – 100%), SiO2 (2.0 – 35%), Al2O3 (0.1 – 30%), MgO (0.1 – 20%), Fe2O3 (0.5 – 40%), Na2O (0.1 – 15%), K2O (0.1 – 5%), P2O5 (0.001 – 2%), MnO (0.01 – 2%), TiO2 (0.01 – 2.0%) in various carbonate materials. Acid decomposition of the samples in closed vessels heated in a HotBlock 200 system is proposed. Correctness of the procedure is confirmed in analysis of standard samples of rocks. The developed procedure was used during the interlaboratory analysis of the standard sample of slag SH17 produced by ZAO ISO (Yekaterinburg, Russia).


Sign in / Sign up

Export Citation Format

Share Document