Application of IR spectroscopy for estimation of stability of the metal - ligand in the complexes of carboxyl-containing polymers

2020 ◽  
Vol 61 (12) ◽  
Keyword(s):  
2020 ◽  
Vol 61 (12) ◽  
pp. 1876-1887
Author(s):  
T. V. Berestova ◽  
K. N. Nosenko ◽  
O. V. Lusina ◽  
L. G. Kuzina ◽  
E. I. Kulish ◽  
...  

2009 ◽  
Vol 64 (11-12) ◽  
pp. 1478-1486 ◽  
Author(s):  
Graham A. Bowmaker ◽  
John V. Hanna

Syntheses and infrared spectroscopic studies are reported for two different polymorphs of copper( I) thiocyanate and for adducts of copper(I) thiocyanate with thiourea (‘tu’) and ethylenethiourea (‘etu’ = imidazolidine-2-thione; (CH2NH)2CS)). These include the previously reported complex CuSCN/etu (1 : 2), which has a trigonal monomeric structure, and CuSCN/etu (1 : 1), which has a three-dimensional polymeric structure. A mechanochemical/infrared study of the CuSCN: tu (1 : 2) system showed that no 1 : 2 complex exists in this case, the product being a mixture of a 1 : 3 complex and a novel 1 : 0.5 complex. The latter complex was prepared both mechanochemically and from solution, and characterized by infrared and solid-state 65Cu broadline NMR spectroscopy. Diagnostic ligand and metal-ligand bands in the IR and far-IR spectra are assigned for both polymorphs of CuSCN and for all of the complexes studied and are discussed in relation to the structures of the complexes


1984 ◽  
Vol 45 (C5) ◽  
pp. C5-167-C5-178
Author(s):  
A. J. Sievers ◽  
Z. Schlesinger ◽  
Y. J. Chabal

2015 ◽  
Vol 9 (4) ◽  
pp. 411-416 ◽  
Author(s):  
Ostap Ivashkiv ◽  
◽  
Piotr Bruzdziak ◽  
Olena Shyshchak ◽  
Jacek Namiesnik ◽  
...  

2018 ◽  
Author(s):  
Adrian Cernescu ◽  
Michał Szuwarzyński ◽  
Urszula Kwolek ◽  
Karol Wolski ◽  
Paweł Wydro ◽  
...  

<div><div>Scattering-mode Scanning Near-Field Optical Microscopy (sSNOM) allows one to obtain absorption spectra in the mid-IR region for samples as small as 20 nm in size. This configuration has made it possible to measure FTIR spectra of the protein complement of membranes. (Amenabar 2013) We now show that mid-IR sSNOM has the sensitivity required to measure spectra of phospholipids in individual bilayers in the spectral range 800 cm<sup>-1</sup>–1400 cm<sup>-1</sup>. We have observed the main absorption bands of the dipalmitoylphosphatidylcholine headgroups in this spectral region above noise level. We have also mapped the phosphate absorption band at 1070 cm<sup>-1</sup> simultaneously with the AFM topography. We have shown that we could achieve sufficient contrast to discriminate between single and multiple phospholipid bilayers and other structures, such as liposomes. This work opens the way to further research that uses nano-IR spectroscopy to describe the biochemistry of cell membranes and model systems.</div></div><div></div>


Sign in / Sign up

Export Citation Format

Share Document