absorption band
Recently Published Documents


TOTAL DOCUMENTS

1585
(FIVE YEARS 196)

H-INDEX

61
(FIVE YEARS 5)

2022 ◽  
Vol 52 (1) ◽  
pp. 56-62
Author(s):  
I P Shilov ◽  
A S Gorshkova ◽  
A V Ivanov ◽  
V D Rumyantseva ◽  
G L Danielyan ◽  
...  

Abstract We report the results of developing a technique for theranostics of skin neoplasms based on luminescence diagnostics in combination with photodynamic therapy (PDT) in the absorption band of porphyrin. It is shown that the therapeutic effect is achieved exclusively due to PDT, without the participation of the hyperthermia process, which occurs at temperatures above 42 °C. The Fluroscan gel [based on the dipotassium salt of the ytterbium complex of 2,4-di-(a-methoxyethyl)deuteroporphyrin IX (Yb-DMDP)] is used as a preparation for theranostics. The main photophysical properties and possible mechanisms of accumulation of nanosized low-toxic photosensitisers based on this compound are studied. It is shown that the Yb-DMDP compound in a DMSO solution (30% aqueous DMSO) enhances photophysical characteristics (luminescence lifetime 5-10 ms, luminescence quantum yield up to 1%, extinction coefficient ~1.96 × 105 M-1 cm-1 at a wavelength of 398 nm). Experimental animals are used to test the proposed technique for theranostics of tumours using the Fluroscan gel and a fibre-optic laser fluorimeter.


Molecules ◽  
2021 ◽  
Vol 27 (1) ◽  
pp. 133
Author(s):  
Konrad Skotnicki ◽  
Ireneusz Janik ◽  
Klaudia Sadowska ◽  
Grazyna Leszczynska ◽  
Krzysztof Bobrowski

One-electron oxidation of 2-selenouracil (2-SeU) by hydroxyl (●OH) and azide (●N3) radicals leads to various primary reactive intermediates. Their optical absorption spectra and kinetic characteristics were studied by pulse radiolysis with UV-vis spectrophotometric and conductivity detection and by the density functional theory (DFT) method. The transient absorption spectra recorded in the reactions of ●OH with 2-SeU are dominated by an absorption band with an λmax = 440 nm, the intensity of which depends on the concentration of 2-SeU and pH. Based on the combination of conductometric and DFT studies, the transient absorption band observed both at low and high concentrations of 2-SeU was assigned to the dimeric 2c-3e Se-Se-bonded radical in neutral form (2●). The dimeric radical (2●) is formed in the reaction of a selenyl-type radical (6●) with 2-SeU, and both radicals are in equilibrium with Keq = 1.3 × 104 M−1 at pH 4 (below the pKa of 2-SeU). Similar equilibrium with Keq = 4.4 × 103 M−1 was determined for pH 10 (above the pKa of 2-SeU), which admittedly involves the same radical (6●) but with a dimeric 2c-3e Se-Se bonded radical in anionic form (2●−). In turn, at the lowest concentration of 2-SeU (0.05 mM) and pH 10, the transient absorption spectrum is dominated by an absorption band with an λmax = 390 nm, which was assigned to the ●OH adduct to the double bond at C5 carbon atom (3●) based on DFT calculations. Similar spectral and kinetic features were also observed during the ●N3-induced oxidation of 2-SeU. In principle, our results mostly revealed similarities in one-electron oxidation pathways of 2-SeU and 2-thiouracil (2-TU). The major difference concerns the stability of dimeric radicals with a 2c-3e chalcogen-chalcogen bond in favor of 2-SeU.


Minerals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 28
Author(s):  
Camila Diez ◽  
Maria Ángeles Rojo ◽  
Jesús Martín-Gil ◽  
Pablo Martín-Ramos ◽  
Manuel Garrosa ◽  
...  

Teeth are unique and complex anatomical organs that can provide relevant data about a person's health, and play an important role in forensic medicine. Teeth are exposed to food, drinks, and the microbiota of the oral cavity; therefore, they have developed a high resistance to localized demineralization. Nevertheless, the continuous demineralization–remineralization cycle present in the oral environment can be influenced by stress, medication, mineralization agents, and other factors such as individual habits, especially diet. In this study, based on attenuated total reflectance Fourier-transform infrared spectroscopy (ATR-FTIR) spectra from tooth samples of 36 patients, several parameters were estimated: the crystallinity index (CI), the phosphate/amide I ratio, and the carbonate/phosphate ratio. In addition, in eight representative samples (six of the root of the tooth and two of the enamel area of the crown), additional characterization by X-ray powder diffraction (XRPD), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) was conducted. From the FTIR data, it was observed that the highest CI values were found in patients who smoked. Further, in both root and crown samples, the intensity of the absorption band corresponding to PO43- increased in patients undergoing treatment with psychotherapeutic drugs. On the other hand, the intensity of the absorption band of the amide I group decreased with medical treatment and with the patient's biological age. Moreover, it was found that the remineralization process was more active in enamel than in the root due to direct contact with saliva. Regarding the results obtained from the X-ray powder diffractograms, exposure to psychotherapeutic drugs affected the definition of the peaks corresponding to hydroxyapatite, both in the crown and root samples. Concerning SEM results, qualitative differences in the stratification process in demineralized surfaces were observed, and EDS analyses showed some differences in the Ca/P ratio between pathological samples and control ones, but without clear patterns. The above techniques, in particular ATR-FTIR, showed promise for the investigation of the effect of changes produced in the hydroxyapatite structure in teeth and, consequently, to determine possible strategies in the diagnostic protocol.


2021 ◽  
Author(s):  
Li Yong ◽  
Zhang Haoshi ◽  
Wang Xiaowei ◽  
Jin Jing

Abstract The radiation-temperature coupling model of the optical fiber attenuation spectrum has been developed. The spectrum in Ge/P co-doped fiber ranging from 800 nm to 1600 nm at different temperatures and doses were measured and decomposed according to the configurational coordinate model. Based on which the power law model is employed to predict the intensity of color center absorption band at different doses. And the fiber loss in space was predicted the model. This work will benefit the application of fibers in the complicated radiation environment.


2021 ◽  
Author(s):  
Shuomin Zhong ◽  
Jiaqi Feng ◽  
Zi-Wei Zheng ◽  
Yungui Ma

An ultrathin and simple frequency-selective rasorber (FSR) with a passband located within a wide absorption band is proposed. The ultrawide absorption band is obtained by employing commercial magnetic materials in the absorption channel and the passband is realized using epsilon-near-zero (ENZ) tunneling waveguides. The attractively ultrathin and simple feature is achieved by utilizing tunneling effect at the cutoff frequency of metallic waveguides with arbitrary length, permitting the overall thickness shrink into to the same as that of the absorber.


2021 ◽  
Author(s):  
Shuomin Zhong ◽  
Jiaqi Feng ◽  
Zi-Wei Zheng ◽  
Yungui Ma

An ultrathin and simple frequency-selective rasorber (FSR) with a passband located within a wide absorption band is proposed. The ultrawide absorption band is obtained by employing commercial magnetic materials in the absorption channel and the passband is realized using epsilon-near-zero (ENZ) tunneling waveguides. The attractively ultrathin and simple feature is achieved by utilizing tunneling effect at the cutoff frequency of metallic waveguides with arbitrary length, permitting the overall thickness shrink into to the same as that of the absorber.


2021 ◽  
Vol 22 (23) ◽  
pp. 13171
Author(s):  
Daniil M. Strashkov ◽  
Vladimir N. Mironov ◽  
Dmitrii M. Nikolaev ◽  
Maxim S. Panov ◽  
Stanislav A. Linnik ◽  
...  

Azobenzene/tetraethyl ammonium photochromic ligands (ATPLs) are photoactive compounds with a large variety of photopharmacological applications such as nociception control or vision restoration. Absorption band maximum and lifetime of the less stable isomer are important characteristics that determine the applicability of ATPLs. Substituents allow to adjust these characteristics in a range limited by the azobenzene/tetraethyl ammonium scaffold. The aim of the current study is to find the scope and limitations for the design of ATPLs with specific spectral and kinetic properties by introducing para substituents with different electronic effects. To perform this task we synthesized ATPLs with various electron acceptor and electron donor functional groups and studied their spectral and kinetic properties using flash photolysis and conventional spectroscopy techniques as well as quantum chemical modeling. As a result, we obtained diagrams that describe correlations between spectral and kinetic properties of ATPLs (absorption maxima of E and Z isomers of ATPLs, the thermal lifetime of their Z form) and both the electronic effect of substituents described by Hammett constants and structural parameters obtained from quantum chemical calculations. The provided results can be used for the design of ATPLs with properties that are optimal for photopharmacological applications.


Sign in / Sign up

Export Citation Format

Share Document