Magnetic resonance imaging MRI and magnetic resonance spectroscopy MRS of intracranial lipomas

10.2741/a237 ◽  
1997 ◽  
Vol 2 (6) ◽  
pp. f13-16 ◽  
Author(s):  
R. Fründ

Author(s):  
Charalampos Tsirmpas ◽  
Kostas Giokas ◽  
Dimitra Iliopoulou ◽  
Dimitris Koutsouris

Magnetic Resonance Imaging (MRI) and Magnetic Resonance Spectroscopy (MRS) are two non-invasive techniques that are increasingly being used to identify and quantify biochemical markers associated with certain diseases, e.g., choline in the case of cancer. The associating of MRI/MRS images, patient’s electronic health record, genome information, and environmental factors increase the precision of diagnosis and treatment. The authors present a collaboration framework based on Cloud Computing which allows analysis of MRI/MRS data based on advanced mathematical tools, advanced combination, and link discovery between different data types, so as to increase the precision and consequently avoid non-appropriate therapy and treatment plans.



2020 ◽  
pp. 088307382097800
Author(s):  
Nikhil Rajvanshi ◽  
Rahul Bhakat ◽  
Sudhir Saxena ◽  
Jitendra Rohilla ◽  
Sriparna Basu ◽  
...  

Developmental delay (DD) is an important long-term neuromorbidity owing to various insults to the developing brain and neuroimaging plays a key role in evaluating these children. Magnetic resonance spectroscopy (MRS) is the only noninvasive method to determine the levels of various metabolites in the brain which aids in delineating the underlying abnormalities. A total of 48 children aged between 6 months to 6 years with developmental delay were included and evaluated with neuroimaging in our study. Sensitivity of MRS in children with DD and DD plus (DD along with seizures, abnormal motor findings, behavior, brainstem evoked response audiometry, visual assessment, and microcephaly) was 81.2% and 89.6% respectively. 86.6% of children with microcephaly had abnormal MRS. MRS detected abnormalities in two-thirds of children with normal magnetic resonance imaging (MRI). Children with behavioral abnormalities had significantly lower N-acetyl aspartate (NAA)–creatine and NAA-choline ratios on MRS. Thus, MRS is additive to MRI in delineating the underlying pathophysiology in children with DD.



2016 ◽  
pp. 147-170
Author(s):  
Yuki Mori ◽  
Ikuhiro Kida ◽  
Haruyuki Fukuchi ◽  
Masaki Fukunaga ◽  
Yoshichika Yoshioka


2021 ◽  
Vol 15 (9) ◽  
pp. 4009-4011
Author(s):  
Saulat Sarfraz ◽  
Mahwish Farzana

Background: In spite of recent advances in the use of diagnostic imaging modalities none of them has a hundred percent accuracy. So, misdiagnosis still occurs. Many trials are being done to evaluate the accuracy of these tools individually or in combination. The most useful investigation is MRI which broadly gives information of lesion as well its relationship with surrounding structures. While magnetic resonance spectroscopy further characterizes the lesion into benign or malignant. So this study is bit superior giving more details. By enlarge histopathology is gold standard for ultimate diagnosis. However these radiological investigations are extremely important for preoperative planning as well management of the lesion. In this study we compare the diagnostic accuracy of Magnetic Resonance Spectroscopy (MRS) with conventional MRI (Magnetic Resonance Imaging) sequences for diagnosis of brain tumors keeping histopathology as gold standard. Methods: The study was performed in 150 clinically suspected cases which were referred to Radiology Department from OPD, Indoor, Emergency and private sources from outside the hospital. Results: Majority 85(56.7%) were adult males and 65(43.3%) were adult females. The study was divided into two major age groups. There were 33cases (22%) with average age 20-35 years. The other age group 36-50 years had 40(26.7%) Majority of the cases 77(51.3%) were of average >50 years of age. The higher age groups showed a female dominance. Histopathology of 100(66.7%) cases confirmed positive and 50(33.3%) negative for MR Spectroscopy. On comparison of conventional MRI with contrast, and Histopathology it was observed that the sensitivity of MRI was 74.0% and the specificity 82.0%.The positive and negative predictive values gave a lower accuracy rate of 76.6%. Conclusion: The conclusion of our study is that MRS is a rigorous, non-invasive, safe and convenient imaging modality for the evaluation of brain tumors as compared to MRI. Keywords: Brain tumors, MRI, MRS, Histopathology



Sign in / Sign up

Export Citation Format

Share Document