Shear Strength Evaluation of Hybrid Coupling Walls Using Finite Element Analysis (FEA)

2012 ◽  
Vol 18 (1) ◽  
pp. 2031-2037
Author(s):  
Ji Hoon Choi ◽  
Baek-Il Bae ◽  
Chang-Sik Choi
Author(s):  
Prenil Poulose ◽  
Zhong Hu

Strength evaluation and failure prediction on a modern composite wind turbine blade have been conducted using finite element analysis. A 3-dimensional finite element model has been developed. Stresses and deflections in the blade under extreme storm conditions have been investigated for different materials. The conventional wood design turbine blade has been compared with the advanced E-glass fiber and Carbon epoxy composite blades. Strength has been analyzed and compared for blades with different laminated layer stacking sequences and fiber orientations for a composite material. Safety design and failure prediction have been conducted based on the different failure criteria. The simulation error estimation has been evaluated. Simulation results have shown that finite element analysis is crucial for designing and optimizing composite wind turbine blades.


1991 ◽  
Vol 28 (1) ◽  
pp. 51-61 ◽  
Author(s):  
N. Yoshida ◽  
N. R. Morgenstern ◽  
D. H. Chan

The softening process as observed in fissured, overconsolidated clays and mudstones is discussed in detail. Softening is classified into internal and external processes. The effect of softening is to decrease the shear strength of a material and its dilatant characteristics. This shear strength reduction is represented as a lowering of the failure envelope and a reduction in the degree of nonlinearity at low stress levels. There are some restrictions related to stress paths that affect the initiation of softening. The softening process may be formulated in terms of a time-dependent yield surface, and the finite-element method can be extended to analyze softening effects. A cut slope is analyzed as an example. The development with time of deformations is traced up to the collapse of the slope. This example contains the essentials to portray the role of the mechanism of softening. A distinction can be made between time-dependent deformation due to softening and those associated with conventional creep mechanisms. Key words: softening, time-dependent strength reduction, finite-element analysis.


Sign in / Sign up

Export Citation Format

Share Document