scholarly journals Toward the development of standardized procedures for structural health monitoring

Author(s):  
Maria Pina Limongelli

<p>Monitoring of structural health conditions is performed using different methods that range from periodic surveys including nondestructive testing at selected locations, to permanent monitoring using network of sensors continuously recording the structural response. These procedures aim at providing detection of possible faults or deterioration processes in order to optimally manage civil structures and infrastructures over the lifecycle. To date several guidelines have been published by different countries all over the world but protocols to apply SHM are generally not defined nor enforced. This is likely to be of the reasons that stand behind the limited diffusion and implementation of SHM for routine operations of condition assessment. In this paper building the principal aspects of the SHM process are presented and the need of the development of protocols for the different phases of the SHM process, from design to practical implementation and use are outlined.</p>

2013 ◽  
Vol 778 ◽  
pp. 757-764 ◽  
Author(s):  
Francesca Lanata

Structural design, regardless of construction material, is based mainly on deterministic codes that partially take into account the real structural response under service and environmental conditions. This approach can lead to overdesigned (and expensive) structures. The differences between the designed and the real behaviors are usually due to service loads not taken into account during the design or simply to the natural degradation of materials properties with time. This is particularly true for wood, which is strongly influenced by service and environmental conditions. Structural Health Monitoring can improve the knowledge of timber structures under service conditions, provide information on material aging and follow the degradation of the overall building performance with time.A long-term monitoring control has been planned on a three-floor structure composed by wooden trusses and composite concrete-wood slabs. The structure is located in Nantes, France, and it is the new extension to the Wood Science and Technology Academy (ESB). The main purpose of the monitoring is to follow the long-term structural response from a mechanical and energetic point of view, particularly during the first few service years. Both static and dynamic behavior is being followed through strain gages and accelerometers. The measurements will be further put into relation with the environmental changes, temperature and humidity in particular, and with the operational charges with the aim to improve the comprehension of long-term performances of wooden structures under service. The goal is to propose new improved and optimized methods to make timber constructions more efficient compared to other construction materials (masonry, concrete, steel).The paper will mainly focus on the criteria used to design the architecture of the monitoring system, the parameters to measure and the sensors to install. The first analyses of the measurements will be presented at the conference to have a feedback on the performance of the installed sensors and to start to define a general protocol for the Structural Health Monitoring of such type of timber structures.


Author(s):  
Sureshkumar M.P ◽  
Vennila G.

In construction industry maintenance should be given utmost importance and focus. For continuous monitoring of maintenance Internet of Things (IoT) can be used. IoT can be used to monitor the structure from anywhere. Structural health monitoring using IoT is the latest technique employed all over the world, especially the buildings exposed to harsh environments. Sensors were used to collect the data from the structure from which we can identify the deterioration and the method to rectify. Cloud computing technique was also employed. A simple signal processing technique helps us to interact with buildings, which was the blessing of IoT.  This paper presents the state of art survey about current research and implementations put into practice.


Sensors ◽  
2019 ◽  
Vol 19 (3) ◽  
pp. 545 ◽  
Author(s):  
Xinlin Qing ◽  
Wenzhuo Li ◽  
Yishou Wang ◽  
Hu Sun

Structural health monitoring (SHM) is being widely evaluated by the aerospace industry as a method to improve the safety and reliability of aircraft structures and also reduce operational cost. Built-in sensor networks on an aircraft structure can provide crucial information regarding the condition, damage state and/or service environment of the structure. Among the various types of transducers used for SHM, piezoelectric materials are widely used because they can be employed as either actuators or sensors due to their piezoelectric effect and vice versa. This paper provides a brief overview of piezoelectric transducer-based SHM system technology developed for aircraft applications in the past two decades. The requirements for practical implementation and use of structural health monitoring systems in aircraft application are then introduced. State-of-the-art techniques for solving some practical issues, such as sensor network integration, scalability to large structures, reliability and effect of environmental conditions, robust damage detection and quantification are discussed. Development trend of SHM technology is also discussed.


2019 ◽  
Vol 4 (3) ◽  
pp. 56 ◽  
Author(s):  
Wouter Jan Klerk ◽  
Timo Schweckendiek ◽  
Frank den Heijer ◽  
Matthijs Kok

One of the most rapidly emerging measures in infrastructure asset management is Structural Health Monitoring (SHM), which aims at reducing uncertainty in structural performance by using monitoring equipment. As earthen flood defence structures typically have large strength uncertainties, such techniques can be particularly promising. However, insight in the key characteristics for successful SHM for flood defences is lacking, which hampers the practical implementation. In this study, we explore the benefits of pore pressure monitoring, one of the most promising SHM techniques for earthen flood defences. The approach is based on a Bayesian pre-posterior analysis, and results are evaluated based on the Value of Information (VoI) obtained from different monitoring strategies. We specifically investigate the effect on long-term reinforcement decisions. The results show that, next to the relative magnitude of reducible uncertainty, the combination of the probability of having a useful observation and the duration of a SHM effort determine the VoI. As it is likely that increasing loads due to climate change will result in more frequent future reinforcements, the influence of scenarios of different rates of increase in future loads is also investigated. It was found that, in all considered possible scenarios, monitoring yields a positive Value of Information, hence it is an economically efficient measure for flood defence asset management both now and in the future.


Sign in / Sign up

Export Citation Format

Share Document