signal processing technique
Recently Published Documents


TOTAL DOCUMENTS

395
(FIVE YEARS 99)

H-INDEX

24
(FIVE YEARS 4)

2022 ◽  
Vol 12 (1) ◽  
pp. 83
Author(s):  
Sohaib Siddique Butt ◽  
Mahnoor Fatima ◽  
Ali Asghar ◽  
Wasif Muhammad

Sound Source Localization (SSL) and gaze shift to the sound source behavior is an integral part of a socially interactive humanoid robot perception system. In noisy and reverberant environments, it is non-trivial to estimate the location of a sound source and accurately shift gaze in its direction. Previous SSL algorithms are deficient in the optimum approximation of distance to audio sources and to accurately detect, interpret, and differentiate the actual sound from comparable sound sources due to challenging acoustic environments. In this article, a learning-based model is presented to achieve noiseless and reverberation-resistant sound source localization in the real-world scenarios. The proposed system utilizes a multi-layered Gaussian Cross-Correlation with Phase Transform (GCC-PHAT) signal processing technique as a baseline for a Generalized Cross Correlation Convolution Neural Network (GCC-CNN) model. The proposed model is integrated with an efficient rotation algorithm to predict and orient toward the sound source. The performance of the proposed method is compared with the state-of-art deep network-based sound source localization methods. The findings of the proposed method outperform the existing neural network-based approaches by achieving the highest accuracy of 96.21% for an active binaural auditory perceptual system.


2021 ◽  
Vol 18 (1) ◽  
pp. 38-47
Author(s):  
Elaf Saeed ◽  
Khalid Abdulhassan ◽  
Osama Khudair

Arc problems are most commonly caused by electrical difficulties such as worn cables and improper connections. Electrical fires are caused by arc faults, which generate tremendous temperatures and discharge molten metal. Every year, flames of this nature inflict a great lot of devastation and loss. A novel approach for identifying residential series and parallel arc faults is presented in this study. To begin, arc faults in series and parallel are simulated using a suitable simulation arc model. The fault characteristics are then recovered using a signal processing technique based on the fault detection technique called Discrete Wavelet Transform (DWT), which is built in MATLAB/Simulink. Then came db2, and one level was discovered for obtaining arc-fault features. The suitable mother and level of wavelet transform should be used, and try to compare results with conventional methods (FFT-Fast Fourier Transform). MATLAB was used to build and simulate arc-fault models with these techniques.


2021 ◽  
Vol 63 (12) ◽  
pp. 712-720
Author(s):  
S Jayakrishnan ◽  
N Suresh ◽  
D Koodalil ◽  
K Balasubramaniam

High-power ultrasonic non-destructive evaluation (NDE) poses significant threats to intrinsic safety. It may lead to hazards in critical industrial applications, especially in oil & gas refineries, high-energy material technologies and the aerospace and aviation industries. Typically, industries employ various certifications and undertake several safety protocols to suppress the likelihood of industrial hazards. In order to satisfy safety standards for operating high-power equipment close to potential explosives and inflammable substances, industries direct large sums of investment into making these inspection systems intrinsically safe by designing complex structures and devising procedures to isolate such equipment from the system or process entirely. However, the uncertainty regarding the effectiveness of such protective measures results in a persisting difficulty in obtaining plant safety certifications and approvals. In this paper, the application of a coded excitation method to make inspection systems intrinsically safe and easily certifiable is explored. Using a pulse compression-based signal processing technique called coded excitation, it has been made possible to achieve non-contact transduction (electromagnetic acoustic transduction and air-coupled transduction) in transmitreceive mode with excitation as low as 0.5 Vpp (peak-to-peak supply voltage). This work reports on the application of coded excitation in bringing down the transduction power requirements for guided ultrasonic wave inspection, thereby making it possible to formulate new inspection applications at very low power, particularly in safety-critical industries.


Author(s):  
Félix Leaman ◽  
Cristián Molina Vicuña ◽  
Elisabeth Clausen

Abstract Background The acoustic emission (AE) analysis has been used increasingly for gearbox diagnostics. Since AE signals are of non-linear, non-stationary and broadband nature, traditional signal processing techniques such as envelope spectrum must be carefully applied to avoid a wrong fault diagnosis. One signal processing technique that has been used to enhance the demodulation process for vibration signals is the empirical mode decomposition (EMD). Until now, the combination of both techniques has not yet been used to improve the fault diagnostics in gearboxes using AE signals. Purpose In this research we explore the use of the EMD to improve the demodulation process of AE signals using the Hilbert transform and enhance the representation of a gear fault in the envelope spectrum. Methods AE signals were measured on a planetary gearbox (PG) with a ring gear fault. A comparative signal analysis was conducted for the envelope spectra of the original AE signals and the obtained intrinsic mode functions (IMFs) considering three types of filters: highpass filter in the whole AE range, bandpass filter based on IMF spectra analysis and bandpass filter based on the fast kurtogram. Results It is demonstrated how the results of the envelope spectrum analysis can be improved by the selection of the relevant frequency band of the IMF most affected by the fault. Moreover, not considering a complementary signal processing technique such as the EMD prior the calculation of the envelope of AE signals can lead to a wrong fault diagnosis in gearboxes. Conclusion The EMD has the potential to reveal frequency bands in AE signals that are most affected by a fault and improve the demodulation process of these signals. Further research shall focus on overcome issues of the EMD technique to enhance its application to AE signals.


Author(s):  
Qiang Gao ◽  
Jun Young Jeon ◽  
Gyuhae Park ◽  
Yeseul Kong ◽  
Yunde Shen ◽  
...  

Beamforming is widely used in structural health monitoring (SHM) systems for impact or damage localization. Beamforming directionality is achieved by the constructive interference of sensor wavefronts, which results in a significant amplification of the measured signal in a particular direction. For beamforming applications, the cost per sensor is typically significant, because of the sensor itself, and the associated electronics. Therefore, in order to minimize the cost of SHM in practice, it is highly desirable to reduce the number of sensors. Beamforming with an array of sensors requires an advanced signal processing technique to detect the direction-of-arrival (DOA). In addition, by deploying more sensors, better detection accuracy can be achieved. In this paper, the non-equidistant linear sensor array is proposed, to obtain lower costs while guaranteeing reasonable detection accuracy. In addition, the proposed sensor deployment scheme is able to reduce the effects of “spatial aliasing,” which phenomenon is typically encountered in the equidistant linear sensor array layout. To validate the performance of the proposed non-equidistant linear array technique in SHM applications, several finite element models (FEM) simulation and experimental investigations are carried out. Different sensor array layouts are also compared to optimize the performance of the non-equidistant linear array.


2021 ◽  
Vol 40 (10) ◽  
pp. 768-777
Author(s):  
Vemund S. Thorkildsen ◽  
Leiv-J. Gelius ◽  
Enders A. Robinson

If an optical hologram is broken into pieces, a virtual object can still be reconstructed from each of the fragments. This reconstruction is possible because each diffraction point emits waves that reach every point of the hologram. Thus, the entire object is encoded into each subset of the hologram. Analogous to the broken hologram, the use of undersampled seismic data violating the Nyquist-Shannon sampling theorem may still give a well-resolved image of the subsurface. A theoretical framework of this idea has already been introduced in the literature and denoted as holistic migration. However, the general lack of seismic field data demonstrations has inspired the study presented here. Since the optical hologram is diffraction-driven, we propose to employ diffraction-separated data and not conventional reflection data as input for holistic migration. We follow the original idea and regularly undersample the data spatially. Such a sampling strategy will result in coherent noise in the image domain. We therefore introduce a novel signal processing technique to remove such noise. The feasibility of the proposed approach is demonstrated employing the Sigsbee2a controlled data set and field data from the Barents Sea.


Author(s):  
Che Ku Nor Azie Hailma Che Ku Melor ◽  
Ariffuddin Joret ◽  
Maryanti Razali ◽  
Asmarashid Ponniran ◽  
Muhammad Suhaimi Sulong ◽  
...  

This paper discusses the method of processing the pulse modulation (PM) ground penetrating radar (GPR) system to detect an embedded object underground. The proposed technique is using frequency domain operation which can be classified based on two parameters which are magnitude and phase. The process of detecting the position and depth of iron objects in dry sandy soil is easier to identify using the techniques and parameters that have been introduced. The selection of the Dipole antenna as a sensor device to detect iron objects has been designed in a frequency range of 70 MHz to 80 MHz. Based on the simulation, the proposed technique seems to be able to detect underground iron objects. By using the magnitude value, the underground iron object that can be detected as displayed in GPR radargram is in the depth range from 0 mm until 1000 mm. Meanwhile, by using the phase value, the embedded underground iron object detected is in the range of depth between 900 mm and 1000 mm. Therefore, based on this promising result, the proposed technique and parameters are considered to be used in


Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6051
Author(s):  
Valeria Pevtsov ◽  
Nathan D. Jacob ◽  
Behzad Kordi

This paper investigates partial discharge (PD) characteristics that lead to the erosion of silicone rubber (SR) polymer under AC stress and DC stress of both polarities. The experiments are performed on high temperature vulcanized (HTV) SR material samples. The inclined plane test apparatus, constructed in accordance with IEC 60587 requirements, is employed to produce the surface partial discharges and the resulting accelerated aging of the specimens. Two commercial instruments are used to obtain the PD data. A concurrent analysis of visual observations of discharge and PD data is performed to classify discharges based on the severity of material degradation that each type causes. Three types of PD are identified and characterized using diagrams of charge magnitude versus time and a signal processing technique called time-frequency mapping. Individual pulse waveshapes of each type of discharge are also analyzed. PD pulse waveforms are analyzed according to their amplitude, energy, pulse width, and frequency spectrum. These pulse waveform parameters are evaluated and compared for the eroding discharge pulses under AC and DC voltage stresses. It is found that the stages of material degradation during IPT are related to the variations in discharge magnitude and the location of pulse clusters on the time-frequency maps.


2021 ◽  
Vol 7 (2) ◽  
pp. 51-55
Author(s):  
Ngoc Quy Dang Hong ◽  
Ngoc Tuan Pham ◽  
Thu Huong Tuong Thi ◽  
Van Chuan Phan ◽  
Nhi Dien Nguyen

The high quality measurements of neutron energy spectra are required in various fields of research and applications. However, in many cases the contribution of gamma background causes the inaccuracy of neutron spectrum. Therefore, the discrimination of gamma-ray events in neutron spectrum is necessary. In this article, an algorithm for digital implementation of the chargecomparison method for n/γ discrimination based on Digital Signal Processing technique is described. Furthermore, the APX-500 board was used as a hardware for the development of a Pulse Shape Disciminator, and is equipped with ADC ADM-414 14 bit-100 MSPS. The fully system has been tested with EJ-301 detector, using 252Cf neutron source.


Sign in / Sign up

Export Citation Format

Share Document