Application of Rough Set Theory to Rule‐type Knowledge Discovery from Field Inspection Data on Highway Bridges

Author(s):  
Ayaho Miyamoto

This paper describes an acquisitive method of rule‐type knowledge from the field inspection data on highway bridges. The proposed method is enhanced by introducing an improvement to a traditional data mining technique, i.e. applying the rough set theory to the traditional decision table reduction method. The new rough set theory approach helps in cases of exceptional and contradictory data, which in the traditional decision table reduction method are simply removed from analyses. Instead of automatically removing all apparently contradictory data cases, the proposed method determines whether the data really is contradictory and therefore must be removed or not. The method has been tested with real data on bridge members including girders and filled joints in bridges owned and managed by a highway corporation in Japan. There are, however, numerous inconsistent data in field data. A new method is therefore proposed to solve the problem of data loss. The new method reveals some generally unrecognized decision rules in addition to generally accepted knowledge. Finally, a computer program is developed to perform calculation routines, and some field inspection data on highway bridges is used to show the applicability of the proposed method.

2013 ◽  
Vol 347-350 ◽  
pp. 3119-3122
Author(s):  
Yan Xue Dong ◽  
Fu Hai Huang

The basic theory of rough set is given and a method for texture classification is proposed. According to the GCLM theory, texture feature is extracted and generate 32 feature vectors to form a decision table, find a minimum set of rules for classification after attribute discretization and knowledge reduction, experimental results show that using rough set theory in texture classification, accompanied by appropriate discrete method and reduction algorithm can get better classification results


2008 ◽  
Vol 178 (1) ◽  
pp. 181-202 ◽  
Author(s):  
Yuhua Qian ◽  
Jiye Liang ◽  
Deyu Li ◽  
Haiyun Zhang ◽  
Chuangyin Dang

2014 ◽  
Vol 521 ◽  
pp. 418-422 ◽  
Author(s):  
Yan Xu ◽  
Xin Chen

Transient Stability Assessment (TSA) aims at assessing stability of power system operation state quickly. This paper introduces rough set theory and clustering analysis to assess power system transient stability. At first, the stability operation parameters and fault places are taken as feature attributes based on the trait of power system transient ability. K-means algorithm is used to make continuous attributes among feature attributes discrete. Then feature attributes and stability types are taken as conditional attributes and decision attributes respectively. Initial decision table is established. Finally, rough set theory is used to form final decision table and rules of TSA are obtained. The IEEE 9-Bus system is employed to demonstrate the validity of the proposed approach.


2014 ◽  
Vol 533 ◽  
pp. 237-241
Author(s):  
Xiao Jing Liu ◽  
Wei Feng Du ◽  
Xiao Min

The measure of the significance of the attribute and attribute reduction is one of the core content of rough set theory. The classical rough set model based on equivalence relation, suitable for dealing with discrete-valued attributes. Fuzzy-rough set theory, integrating fuzzy set and rough set theory together, extending equivalence relation to fuzzy relation, can deal with fuzzy-valued attributes. By analyzing three problems of FRAR which is a fuzzy decision table attribute reduction algorithm having extensive use, this paper proposes a new reduction algorithm which has better overcome the problem, can handle larger fuzzy decision table. Experimental results show that our reduction algorithm is much quicker than the FRAR algorithm.


2011 ◽  
Vol 120 ◽  
pp. 410-413
Author(s):  
Feng Wang ◽  
Li Xin Jia

The speed signal of engine contains abundant information. This paper introduces rough set theory for feature extraction from engine's speed signals, and proposes a method of mining useful information from a mass of data. The result shows that the discernibility matrix algorithm can be used to reduce attributes in decision table and eliminate unnecessary attributes, efficiently extracted the features for evaluating the technical condition of engine.


2011 ◽  
Vol 467-469 ◽  
pp. 306-311
Author(s):  
Xian Wen Luo

The paper adopts the knowledge reduction method in Rough Set theory to adjust Apriori Algorithm and proposes “Itemset Reduction Method”to reduce the amount of the candidate sets and improve the effeciency of the algorithm. In the experiments of the research, the results of both the improved algorithm and Apriori Algorithm are compared, and ideal results are gained.


2017 ◽  
Vol 33 (2) ◽  
pp. 131-142
Author(s):  
Quang Minh Hoang ◽  
Vu Duc Thi ◽  
Nguyen Ngoc San

Rough set theory is useful mathematical tool developed to deal with vagueness and uncertainty. As an important concept of rough set theory, an attribute reduct is a subset of attributes that are jointly sufficient and individually necessary for preserving a particular property of the given information table. Rough set theory is also the most popular for generating decision rules from decision table. In this paper, we propose an algorithm finding object reduct of consistent decsion table. On the other hand, we also show an algorithm to find some attribute reducts and the correctness of our algorithms is proof-theoretically. These our algorithms have polynomial time complexity. Our finding object reduct helps other algorithms of finding attribute reducts become more effectively, especially as working with huge consistent decision table.


Sign in / Sign up

Export Citation Format

Share Document