Comparison of CLT Design Methods to Composite Beam Theory

Author(s):  
Joshua Schultz
2016 ◽  
Vol 35 (23) ◽  
pp. 1696-1711 ◽  
Author(s):  
Danilo S Victorazzo ◽  
Andre De Jesus

In this paper we extend Kollár and Pluzsik’s thin-walled anisotropic composite beam theory to include multiple cells with open branches and booms, and present a finite element formulation utilizing the stiffness matrix obtained from this theory. To recover the 4 × 4 compliance matrix of a beam containing N closed cells, we solve an asymmetric system of 2N + 4 linear equations four times with unitary section loads and extract influence coefficients from the calculated strains. Finally, we compare 4 × 4 stiffness matrices of a multicelled beam using this method against matrices obtained using the finite element method to demonstrate accuracy. Similarly to its originating theory, the effects of shear deformation and restrained warping are assumed negligible.


2020 ◽  
Vol 8 (5) ◽  
pp. 3559-3565

In this Paper, the analysis of simply supported laminated composite beam having uniformly distributed load is performed. The solutions obtained in the form of the displacements and stresses for different layered cross ply laminated composite simply supported beams subjected uniformly distributed to load. Different aspect ratio consider for different results in terms of displacement, bending stress and shear stresses. The shear stresses are calculated with the help of equilibrium equation and constitutive relationship. Using displacement field including trigonometric function of laminated composite beams are derived from virtual displacement principle. There are axial displacement, transverse displacement, bending stress and shear stresses. In addition, Euler-Bernoulli (ETB), First order shear deformation beam theory (FSDT), Higher order shear deformation beam theory (HSDT) and Hyperbolic shear deformation beam theory (HYSDT) solution have been made for comparison and better accuracy of solutions and results of static analyses of laminated composite beams for simply supported laminated composite beam.


1984 ◽  
Vol 106 (4) ◽  
pp. 295-301 ◽  
Author(s):  
E. J. Cheal ◽  
W. C. Hayes ◽  
A. A. White ◽  
S. M. Perren

A three-dimensional, linear finite element model was generated for an intact plexiglass tube with an attached six-hole stainless steel compression plate. We examined external forces representing axial, off-center axial, and four-point bending, along with superimposed plate and screw pretension. Strain gage experiments were conducted to test model validity and the finite element results were contrasted to a composite beam theory solution. Excellent correspondence was observed between finite element and strain gage data for the most significant strain components. Composite beam theory tended to overestimate the neutral axis shift which results from plate application. The model also demonstrated fracture site distraction due to plate pretension, and the tendency for outer screw failure for the combination of bending-closed with a preload in the plate and screws.


Sign in / Sign up

Export Citation Format

Share Document