scholarly journals Influenza vaccine effectiveness against laboratory-confirmed influenza in hospitalised adults aged 60 years or older, Valencia Region, Spain, 2017/18 influenza season

2019 ◽  
Vol 24 (31) ◽  
Author(s):  
Ainara Mira-Iglesias ◽  
F Xavier López-Labrador ◽  
Víctor Baselga-Moreno ◽  
Miguel Tortajada-Girbés ◽  
Juan Mollar-Maseres ◽  
...  

Introduction Influenza immunisation is recommended for elderly people each season. The influenza vaccine effectiveness (IVE) varies annually due to influenza viruses evolving and the vaccine composition. Aim To estimate, in inpatients ≥ 60 years old, the 2017/18 trivalent IVE, overall, by vaccine type and by strain. The impact of vaccination in any of the two previous seasons (2016/17 and 2015/16) on current (2017/18) IVE was also explored. Methods This was a multicentre prospective observational study within the Valencia Hospital Surveillance Network for the Study of Influenza and Respiratory Viruses Disease (VAHNSI, Spain). The test-negative design was applied taking laboratory-confirmed influenza as outcome and vaccination status as main exposure. Information about potential confounders was obtained from clinical registries and/or by interviewing patients; vaccine information was only ascertained by registries. Results Overall, 2017/18 IVE was 9.9% (95% CI: −15.5 to 29.6%), and specifically, 48.3% (95% CI: 13.5% to 69.1%), −29.9% (95% CI: −79.1% to 5.8%) and 25.7% (95% CI: −8.8% to 49.3%) against A(H1N1)pdm09, A(H3N2) and B/Yamagata lineage, respectively. For the adjuvanted and non-adjuvanted vaccines, overall IVE was 10.0% (95% CI: −24.4% to 34.9%) and 7.8% (95% CI: −23.1% to 31.0%) respectively. Prior vaccination significantly protected against influenza B/Yamagata lineage (IVE: 50.2%; 95% CI: 2.3% to 74.6%) in patients not vaccinated in the current season. For those repeatedly vaccinated against influenza A(H1N1)pdm09, IVE was 46.4% (95% CI: 6.8% to 69.2%). Conclusion Our data revealed low vaccine effectiveness against influenza in hospitalised patients ≥60 years old in 2017/18. Prior vaccination protected against influenza A(H1N1)pdm09 and B/Yamagata-lineage.

2018 ◽  
Vol 5 (suppl_1) ◽  
pp. S68-S68
Author(s):  
Jessie Chung ◽  
Brendan Flannery ◽  
Rodolfo Begue ◽  
Herve Caspard ◽  
Laurie Demarcus ◽  
...  

Abstract Background Quadrivalent live attenuated influenza vaccine (LAIV4) was not recommended for use in the United States for the 2016–2017 and 2017–2018 influenza seasons based on US observational studies of vaccine effectiveness (VE) from 2013–2014 to 2015–2016. We pooled individual patient data on children aged 2–17 years enrolled in 5 US studies during these 3 influenza seasons to further investigate VE by vaccine type. Methods Analyses included 17,173 children enrolled in the US Department of Defense Global Laboratory-based Influenza Surveillance Program, US Influenza Vaccine Effectiveness Network, Influenza Incidence Surveillance Project, Influenza Clinical Investigation for Children, and a Louisiana State University study. Participants’ specimens were tested for influenza by reverse transcription-polymerase chain reaction (RT-PCR), culture, or a combination of rapid antigen testing and RT-PCR. VE was calculated by comparing odds of vaccination with either inactivated influenza vaccine (IIV) or LAIV4 among influenza-positive cases to test-negative controls and calculated as 100 × (1 − odds ratio) in logistic regression models with age, calendar time, influenza season, and study site (random effect). Patients were stratified by prior season vaccination status in a subanalysis. Results Overall, 38% of patients (N = 6,558) were vaccinated in the current season, of whom 30% (N = 1,979) received LAIV4. Pooled VE of IIV against any influenza virus was 51% (95% CI: 47, 54) versus 26% (95% CI: 15, 36) for LAIV4. Point estimates for pooled VE against any influenza by age group ranged from 45% to 58% for IIV and 19% to 34% for LAIV4 during the 3 seasons (Figures 1 and 2). Pooled VE against influenza A(H1N1)pdm09 was 67% (95% CI: 62, 72) for IIV versus 20% (95% CI: −6, 39) for LAIV4. Pooled VE against influenza A(H3N2) was 29% (95% CI: 14, 42) for IIV versus 7% (95% CI: −11, 23) for LAIV4, and VE against influenza B was 52% (95% CI: 42, 60) for IIV and 66% (95% CI: 47, 77) for LAIV4. VE against influenza A(H1N1)pdm09 was lower for LAIV4 versus IIV across all strata of prior season vaccination (Figure 3). Conclusion Consistent with individual studies, our pooled analyses found that LAIV4 effectiveness was reduced for all age groups against influenza A(H1N1)pdm09 compared with IIV. This result did not vary based on prior vaccination status. Disclosures H. Caspard, AstraZeneca: Employee, Salary.


2017 ◽  
Vol 4 (suppl_1) ◽  
pp. S60-S60
Author(s):  
Ashley Fowlkes ◽  
Hannah Friedlander ◽  
Andrea Steffens ◽  
Kathryn Como-Sabetti ◽  
Dave Boxrud ◽  
...  

Abstract Background Due to marked variability in circulating influenza viruses each year, annual evaluation of the vaccine’s effectiveness against severe outcomes is essential. We used the Minnesota Department of Health’s (MDH) Severe Acute Respiratory Illness (SARI) surveillance to evaluate vaccine effectiveness (VE) against influenza-associated hospitalization over three influenza seasons. Methods Residual respiratory specimens from patients admitted with SARI were sent to the MDH laboratory for influenza RT-PCR testing. Medical records were reviewed to collect patient data. Vaccination history was verified using the state immunization registry. We included patients aged ≥6 months to < 13 years, after which immunization reporting is not required, hospitalized from the earliest influenza detection after July through April each year. We defined vaccinated patients as those ≥1 dose of influenza vaccine in the current season. Children aged < 9 years with no history of vaccination were considered vaccinated if 2 were doses given a month apart. Partially vaccinated children were excluded. We estimated VE as 1 minus the adjusted odds ratio (x100%) of influenza vaccination among influenza cases vs. negative controls, controlling for age, race, days from onset to admission, comorbidities, and admission month. Results Among 2198 SARI patients, 763 (35%) were vaccinated for influenza, 180 (8.2%) were partially vaccinated, and 1255 (57%) were unvaccinated. Influenza was detected among 202 (9.2%) children, and significantly more frequently among children aged ≥5 years (17%) compared with younger children (7.4%). The adjusted VE in 2013–14 was 68% (95% Confidence Interval: 34, 85), but was non-significant during the 2014–15 and 2015–16 seasons (Figure). Estimates of VE by influenza A subtypes varied substantially by year; VE against influenza B viruses was significant, but could not be stratified by year. VE was impacted when live attenuated influenza vaccine recipients were excluded. Conclusion We report moderately high influenza VE in 2013–14 and a point estimate higher than other published estimates from outpatient data in 2014–15. These results, underscore the importance of influenza vaccination to prevent severe outcomes such as hospitalization. Disclosures All authors: No reported disclosures.


Vaccines ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1094
Author(s):  
Hyder Mir ◽  
Inaamul Haq ◽  
Parvaiz A. Koul

Influenza vaccine uptake in India is poor, and scant data exist regarding the effectiveness of influenza vaccine against hospitalization. Methods: From October 2019 to March 2020, vaccination status of 1219 patients (males n = 571, aged 5–107 years; median, 50 years) hospitalized with severe acute respiratory illness (SARI) was assessed. The patients were tested for influenza viruses and their subtypes by RT PCR. Sequencing of the HA gene was performed. Vaccine effectiveness (VE) against influenza subtypes was estimated by the test negative design. Results: A total of 336 (27.5%) patients were influenza-positive, with influenza B/Victoria accounting for 49.7% (n = 167), followed by influenza A/H1N1 (47.6%; n = 155) and influenza A/H3N2 (4.4%; n = 15). About 6.8% and 8.6% of the influenza-positive and influenza-negative patients, respectively, had been vaccinated. Adjusted VE for any influenza strain was 13% (95% CI −42 to 47), which for influenza B was 0%. HA sequencing revealed that influenza B samples mainly belonged to subclade V1A.3/133R with deletion of residues 163–165, as against the 2-aa deletion in influenza B/Colorado/06/2017 strain, contained in the vaccine. VE for influenza A/H1N1 was 55%. Conclusions: Poor VE due to a genetic mismatch between the circulating strain and the vaccine strain calls for efforts to reduce the mismatch.


2012 ◽  
Vol 141 (3) ◽  
pp. 620-630 ◽  
Author(s):  
R. G. PEBODY ◽  
N. ANDREWS ◽  
D. M. FLEMING ◽  
J. McMENAMIN ◽  
S. COTTRELL ◽  
...  

SUMMARYAn analysis was undertaken to measure age-specific vaccine effectiveness (VE) of 2010/11 trivalent seasonal influenza vaccine (TIV) and monovalent 2009 pandemic influenza vaccine (PIV) administered in 2009/2010. The test-negative case-control study design was employed based on patients consulting primary care. Overall TIV effectiveness, adjusted for age and month, against confirmed influenza A(H1N1)pdm 2009 infection was 56% (95% CI 42–66); age-specific adjusted VE was 87% (95% CI 45–97) in <5-year-olds and 84% (95% CI 27–97) in 5- to 14-year-olds. Adjusted VE for PIV was only 28% (95% CI −6 to 51) overall and 72% (95% CI 15–91) in <5-year-olds. For confirmed influenza B infection, TIV effectiveness was 57% (95% CI 42–68) and in 5- to 14-year-olds 75% (95% CI 32–91). TIV provided moderate protection against the main circulating strains in 2010/2011, with higher protection in children. PIV administered during the previous season provided residual protection after 1 year, particularly in the <5 years age group.


2015 ◽  
Vol 23 (1) ◽  
Author(s):  
Daniela Pitigoi ◽  
George Necula ◽  
Viorel Alexandrescu ◽  
Maria Elena Mihai ◽  
Carmen Maria Cherciu ◽  
...  

AbstractBackgound. Using influenza epidemiological and virological surveillance data, we aimed at investigating the profile of influenza viruses circulating in Romania during the season 2012-2013 and estimating the effectiveness (VE) of the seasonal vaccine. Methods. We tested all specimens collected from patients with influenza like illness (ILI) in the national surveillance system between week 40/2012 to week 20/2013. Influenza A/B positive specimens identified by molecular detection (RT-PCR) were further characterized. We used hemagglutination inhibition assay for antigenic characterization and chemiluminiscence assay for the antiviral susceptibility testing. Subsequently we conducted nucleotide sequencing of hemagglutinin and neuraminidase genes and phylogenetic tree analyses. We estimated influenza VE using the test negative case-control study design, as 1-odds ratio of vaccination among ILI cases positive for influenza and ILI negative controls. Results and Discussions. We tested 1087 specimens, and 537 cases were positive (56.2% influenza B, 40.6% A(H1N1)pdm09, 3.2% A(H3N2). Sixty-four influenza viruses were antigenically and/or genetically characterized. A(H1N1)pdm09 viruses were related to the vaccine strain A/ California/07/2009 and clustered with genetic group 6 similar to A/St. Petersburg/27/2011. Influenza B viruses belonged to clade 2 of type B/Yamagata lineage, related to B/Estonia/55669/2011 except one, B/Victoria lineage, representative strain B/Brisbane/60/2008. A(H3) viruses clustered with group 3C of the A/Victoria/208/2009 clade, similar to the vaccine strain A/Victoria/361/2011. All tested strains (57) demonstrated susceptibility to oseltamivir and zanamivir. The adjusted seasonal influenza vaccine effectiveness against influenza A(H1N1)pdm09 (N=119) was 76.9% (95% CI: -113.4, 98.5), suggesting a good protection, consistent with the good match between the vaccine and circulating strains.


2018 ◽  
Vol 69 (6) ◽  
pp. 970-979 ◽  
Author(s):  
M K Nichols ◽  
M K Andrew ◽  
L Ye ◽  
T F Hatchette ◽  
A Ambrose ◽  
...  

Abstract Background Recent studies have demonstrated the possibility of negative associations between prior influenza vaccines and subsequent influenza vaccine effectiveness (VE), depending on season and strain. We investigated this association over 4 consecutive influenza seasons (2011–2012 through 2014–2015) in Canada. Methods Using a matched test-negative design, laboratory-confirmed influenza cases and matched test-negative controls admitted to hospitals were enrolled. Patients were stratified into 4 groups according to influenza vaccine history (not vaccinated current and prior season [referent], vaccinated prior season only, vaccinated current season only, and vaccinated both current and prior season). Conditional logistic regression was used to estimate VE; prior vaccine impact was assessed each season for overall effect and effect stratified by age (<65 years, ≥65 years) and type/subtype (A/H1N1, A/H3N2, influenza B). Results Overall, mainly nonsignificant associations were observed. Trends of nonsignificant decreased VE among patients repeatedly vaccinated in both prior and current season relative to the current season only were observed in the A/H3N2-dominant seasons of 2012–2013 and 2014–2015. Conversely, in 2011–2012, during which B viruses circulated, and in 2013–2014, when A/H1N1 circulated, being vaccinated in both seasons tended to result in a high VE in the current season against the dominant circulating subtype. Conclusions Prior vaccine impact on subsequent VE among Canadian inpatients was mainly nonsignificant. Even in circumstances where we observed a trend of negative impact, being repeatedly vaccinated was still more effective than not receiving the current season’s vaccine. These findings favor continuation of annual influenza vaccination recommendations, particularly in older adults. Clinical Trials Registration NCT01517191.


2016 ◽  
Vol 213 (10) ◽  
pp. 1546-1556 ◽  
Author(s):  
Manjusha Gaglani ◽  
Jessica Pruszynski ◽  
Kempapura Murthy ◽  
Lydia Clipper ◽  
Anne Robertson ◽  
...  

2020 ◽  
Vol 25 (10) ◽  
Author(s):  
Angela Rose ◽  
Esther Kissling ◽  
Hanne-Dorthe Emborg ◽  
Amparo Larrauri ◽  
Jim McMenamin ◽  
...  

Background Influenza A(H1N1)pdm09, A(H3N2) and B viruses were co-circulating in Europe between September 2019 and January 2020. Aim To provide interim 2019/20 influenza vaccine effectiveness (VE) estimates from six European studies, covering 10 countries and both primary care and hospital settings. Methods All studies used the test-negative design, although there were some differences in other study characteristics, e.g. patient selection, data sources, case definitions and included age groups. Overall and influenza (sub)type-specific VE was estimated for each study using logistic regression adjusted for potential confounders. Results There were 31,537 patients recruited across the six studies, of which 5,300 (17%) were cases with 5,310 infections. Most of these (4,466; 84%) were influenza A. The VE point estimates for all ages were 29% to 61% against any influenza in the primary care setting and 35% to 60% in hospitalised older adults (aged 65 years and over). The VE point estimates against A(H1N1)pdm09 (all ages, both settings) was 48% to 75%, and against A(H3N2) ranged from −58% to 57% (primary care) and −16% to 60% (hospital). Against influenza B, VE for all ages was 62% to 83% (primary care only). Conclusions Influenza vaccination is of continued benefit during the ongoing 2019/20 influenza season. Robust end-of-season VE estimates and genetic virus characterisation results may help understand the variability in influenza (sub)type-specific results across studies.


2018 ◽  
Vol 220 (8) ◽  
pp. 1265-1275 ◽  
Author(s):  
Jill M Ferdinands ◽  
Manjusha Gaglani ◽  
Emily T Martin ◽  
Don Middleton ◽  
Arnold S Monto ◽  
...  

Abstract Background Evidence establishing effectiveness of influenza vaccination for prevention of severe illness is limited. The US Hospitalized Adult Influenza Vaccine Effectiveness Network (HAIVEN) is a multiyear test-negative case-control study initiated in 2015–2016 to estimate effectiveness of vaccine in preventing influenza hospitalization among adults. Methods Adults aged ≥18 years admitted to 8 US hospitals with acute respiratory illness and testing positive for influenza by polymerase chain reaction were cases; those testing negative were controls. Vaccine effectiveness was estimated with logistic regression adjusting for age, comorbidities, and other confounding factors and stratified by frailty, 2-year vaccination history, and clinical presentation. Results We analyzed data from 236 cases and 1231 controls; mean age was 58 years. More than 90% of patients had ≥1 comorbidity elevating risk of influenza complications. Fifty percent of cases and 70% of controls were vaccinated. Vaccination was 51% (95% confidence interval [CI], 29%–65%) and 53% (95% CI, 11%–76%) effective in preventing hospitalization due to influenza A(H1N1)pdm09 and influenza B virus infection, respectively. Vaccine was protective for all age groups. Conclusions During the 2015–2016 US influenza A(H1N1)pdm09–predominant season, we found that vaccination halved the risk of influenza-association hospitalization among adults, most of whom were at increased risk of serious influenza complications due to comorbidity or age.


2018 ◽  
Vol 23 (9) ◽  
Author(s):  
Marc Rondy ◽  
Esther Kissling ◽  
Hanne-Dorthe Emborg ◽  
Alin Gherasim ◽  
Richard Pebody ◽  
...  

Between September 2017 and February 2018, influenza A(H1N1)pdm09, A(H3N2) and B viruses (mainly B/Yamagata, not included in 2017/18 trivalent vaccines) co-circulated in Europe. Interim results from five European studies indicate that, in all age groups, 2017/18 influenza vaccine effectiveness was 25 to 52% against any influenza, 55 to 68% against influenza A(H1N1)pdm09, −42 to 7% against influenza A(H3N2) and 36 to 54% against influenza B. 2017/18 influenza vaccine should be promoted where influenza still circulates.


Sign in / Sign up

Export Citation Format

Share Document