scholarly journals Topological Sensitivity Analysis for the Anisotropic Laplace Problem

2021 ◽  
Vol 19 (6) ◽  
pp. 949-969
Author(s):  
Imen Kallel

This paper is concerned with the reconstruction of objects immersed in anisotropic media from boundary measurements. The aim of this paper is to propose an alternative approach based on the Kohn-Vogelius formulation and the topological sensitivity analysis method. The idea is to formulate the reconstruction problem as a topology optimization one minimizing an energy-like function. We derive a topological asymptotic expansion for the anisotropic Laplace operator. The unknown object is reconstructed using level-set curve of the topological gradient. We make finally some numerical examples proving the efficiency and accuracy of the proposed algorithm.

2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Emna Ghezaiel ◽  
Maatoug Hassine ◽  
Mohamed Abdelwahed ◽  
Nejmeddine Chorfi

Abstract The topological sensitivity analysis method gives the variation of a criterion with respect to the creation of a small hole in the domain. In this paper, we use this method to solve an inverse problem related to the turbine blade cooling. The aim is to optimize the hole characteristics created in the blade vane in order to improve the behavior of the cooling system. A topological optimization algorithm is proposed and some numerical results, showing the efficiency of our approach, are presented.


Author(s):  
Guang Dong ◽  
Zheng-Dong Ma ◽  
Gregory Hulbert ◽  
Noboru Kikuchi ◽  
Sudhakar Arepally ◽  
...  

Efficient and reliable sensitivity analyses are critical for topology optimization, especially for multibody dynamics systems, because of the large number of design variables and the complexities and expense in solving the state equations. This research addresses a general and efficient sensitivity analysis method for topology optimization with design objectives associated with time dependent dynamics responses of multibody dynamics systems that include nonlinear geometric effects associated with large translational and rotational motions. An iterative sensitivity analysis relation is proposed, based on typical finite difference methods for the differential algebraic equations (DAEs). These iterative equations can be simplified for specific cases to obtain more efficient sensitivity analysis methods. Since finite difference methods are general and widely used, the iterative sensitivity analysis is also applicable to various numerical solution approaches. The proposed sensitivity analysis method is demonstrated using a truss structure topology optimization problem with consideration of the dynamic response including large translational and rotational motions. The topology optimization problem of the general truss structure is formulated using the SIMP (Simply Isotropic Material with Penalization) assumption for the design variables associated with each truss member. It is shown that the proposed iterative steps sensitivity analysis method is both reliable and efficient.


Sign in / Sign up

Export Citation Format

Share Document