topological gradient
Recently Published Documents


TOTAL DOCUMENTS

42
(FIVE YEARS 14)

H-INDEX

7
(FIVE YEARS 3)

2021 ◽  
Vol 19 (6) ◽  
pp. 949-969
Author(s):  
Imen Kallel

This paper is concerned with the reconstruction of objects immersed in anisotropic media from boundary measurements. The aim of this paper is to propose an alternative approach based on the Kohn-Vogelius formulation and the topological sensitivity analysis method. The idea is to formulate the reconstruction problem as a topology optimization one minimizing an energy-like function. We derive a topological asymptotic expansion for the anisotropic Laplace operator. The unknown object is reconstructed using level-set curve of the topological gradient. We make finally some numerical examples proving the efficiency and accuracy of the proposed algorithm.


2021 ◽  
Author(s):  
Ravi Prakash ◽  
Hrizi Mourad ◽  
Antonio Andre Novotny

Abstract In this paper, a noniterative method for solving an inverse source problem governed by the two-dimensional time-fractional diffusion equation is proposed. The basic idea consists in reconstructing the geometrical support of the unknown source from partial boundary measurements of the associated potential. A Kohn-Vogelius type shape functional is considered together with a regularization term penalizing the relative perimeter of the unknown set of anomalies. Identifiability result is derived and uniqueness of a minimizer is ensured. The shape functional measuring the misfit between the solutions of two auxiliary problems containing information about the boundary measurements is minimized with respect to a finite number of ball-shaped trial anomalies by using the topological derivative method. In particular, the second-order topological gradient is exploited to devise an efficient and fast noniterative reconstruction algorithm. Finally, some numerical experiments are presented, showing different features of the proposed approach in reconstructing multiple anomalies of varying shapes and sizes by taking noisy data into account .


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Frédérique Le Louër ◽  
María-Luisa Rapún

PurposeThe purpose of this paper is to revisit the recursive computation of closed-form expressions for the topological derivative of shape functionals in the context of time-harmonic acoustic waves scattering by sound-soft (Dirichlet condition), sound-hard (Neumann condition) and isotropic inclusions (transmission conditions).Design/methodology/approachThe elliptic boundary value problems in the singularly perturbed domains are equivalently reduced to couples of boundary integral equations with unknown densities given by boundary traces. In the case of circular or spherical holes, the spectral Fourier and Mie series expansions of the potential operators are used to derive the first-order term in the asymptotic expansion of the boundary traces for the solution to the two- and three-dimensional perturbed problems.FindingsAs the shape gradients of shape functionals are expressed in terms of boundary integrals involving the boundary traces of the state and the associated adjoint field, then the topological gradient formulae follow readily.Originality/valueThe authors exhibit singular perturbation asymptotics that can be reused in the derivation of the topological gradient function in the iterated numerical solution of any shape optimization or imaging problem relying on time-harmonic acoustic waves propagation. When coupled with converging Gauss−Newton iterations for the search of optimal boundary parametrizations, it generates fully automatic algorithms.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Frédérique Le Louër ◽  
María-Luisa Rapún

PurposeIn this paper, the authors revisit the computation of closed-form expressions of the topological indicator function for a one step imaging algorithm of two- and three-dimensional sound-soft (Dirichlet condition), sound-hard (Neumann condition) and isotropic inclusions (transmission conditions) in the free space.Design/methodology/approachFrom the addition theorem for translated harmonics, explicit expressions of the scattered waves by infinitesimal circular (and spherical) holes subject to an incident plane wave or a compactly supported distribution of point sources are available. Then the authors derive the first-order term in the asymptotic expansion of the Dirichlet and Neumann traces and their surface derivatives on the boundary of the singular medium perturbation.FindingsAs the shape gradient of shape functionals are expressed in terms of boundary integrals involving the boundary traces of the state and the associated adjoint field, then the topological gradient formulae follow readily.Originality/valueThe authors exhibit singular perturbation asymptotics that can be reused in the derivation of the topological gradient function that generates initial guesses in the iterated numerical solution of any shape optimization problem or imaging problems relying on time-harmonic acoustic wave propagation.


2021 ◽  
pp. 47-61
Author(s):  
Kateryna Bashtova ◽  
Mathieu Causse ◽  
Cameron James ◽  
Florent Masmoudi ◽  
Mohamed Masmoudi ◽  
...  

2021 ◽  
Author(s):  
Pietro Barbiero ◽  
Gabriele Ciravegna ◽  
Vincenzo Randazzo ◽  
Eros Pasero ◽  
Giansalvo Cirrincione

2021 ◽  
pp. 126032
Author(s):  
F. Mitjana ◽  
S. Cafieri ◽  
F. Bugarin ◽  
S. Segonds ◽  
F. Castanie ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document