scholarly journals Analysing Random Vibration of KLT Box during Transporting by Finite Element Method

10.29007/b1th ◽  
2022 ◽  
Author(s):  
Cong Hoa Vu ◽  
Ngoc Thien Ban Dang

Today, freight is an extremely important industry for the world we are living. Fast transportation, large volume...will optimize the cost, time and effort. Besides, ensuring the products safety is a matter of concern. During transporting, it is inevitable that the vibration caused by the engine, rough road surface...the cargo inside can be damaged. Automobile industries have prime importance to vibration testing. Sine vibration testing is performed when we have been given with only one frequency at given time instant. Trend to perform random vibration testing has been increased in recent times. As random vibration considers all excited frequencies in defined spectrum at known interval of time, it gives real-time data of vibration severities. The vibration severity is expressed in terms of Power Spectral Density (PSD). KLT box is an industrial stacking container conforming to the VDA 4500 standard that was defined by German Association of the Automotive Industry (VDA) for the automotive industry. The aim of this paper is study about random vibration and power spectral density analysis, how it can be used to predict the impact of hash road to the KLT box on container / truck during transportation. Finite element model is developed in ANSYS, modal analysis and random vibration analysis were done.

2014 ◽  
Vol 580-583 ◽  
pp. 1742-1745
Author(s):  
Xia Hua ◽  
Chang Quan Yu ◽  
Wei Hua Zhu ◽  
Kun Zhao ◽  
Chun Lin Huang

In this paper, the power spectral density method based on ANSYS is carried out to study the intake tower finite element model under an earthquake. A power spectral density function is obtained and disposed to be smooth. Then it is used to study the intake tower when the seismic wave occurs in the direction of flow and perpendicular to the direction of flow .This study provides theoretical basis for reinforce and transform of the intake tower structure.


1993 ◽  
Vol 1 (1) ◽  
pp. 33-43 ◽  
Author(s):  
Allan G. Piersol

This article presents a methodology for selecting the frequency resolution bandwidth for the spectral analysis of stationary random vibration signals in an optimum manner. Specifically, the resolution bandwidth that will produce power spectral density estimates with a minimum mean square error is determined for any given measurement duration (averaging time), and methods of approximating the optimum bandwidth using practical spectral analysis procedures are detailed. The determination of the optimum resolution bandwidth requires an estimate for the damping ratio of the vibrating structure that produced the measured vibration signal and the analysis averaging time. It is shown that the optimum resolution bandwidth varies approximately with the 0.8 power of the damping ratio and the bandwidth center frequency, and the −0.2 power of the averaging time. Also, any resolution bandwidth within ±50% of the optimum bandwidth will produce power spectral density (PSD) estimates with an error that is no more than 25% above the minimum achievable error. If a damping ratio of about 5% for structural resonances is assumed, a constant percentage resolution bandwidth of 1/12 octave, but no less than 2.5 Hz, will provide a near optimum PSD analysis for an averaging time of 2 seconds over the frequency range from 20 to 2000 Hz. A simple scaling formula allows the determination of appropriate bandwidths for other damping ratios and averaging times.


Author(s):  
Yuefang Wang ◽  
Yan Liu ◽  
Xuejun Wang ◽  
Hongkun Li ◽  
Daren Jiang

Dynamic response of impeller of centrifugal compressor is studied considering pulsating pressure field on blades due to unsteady flow conditions. The aerodynamic forces on the blades are modeled as random load whose spectral characteristics are determined through computational fluid dynamic simulations in the time domain. The dynamical response in the unsteady case is solved as a random vibration problem in the frequency domain which provides useful power spectral density displacement and stress for early stage of impeller design. A semi-open impeller mounted with 19 blades is modeled using three dimensional solid finite elements. The random vibration problem of the impeller is solved through the Pseudo-Excitation Method considering spatial variance of the pressure field. A user-defined module is developed based on harmonic analysis to generate the auto power spectral density and variance of displacement and stress at 200 nodes. It is demonstrated that solving a random vibration problem through the Pseudo-Excitation Method is faster than the commonly adopted multiple-step transient analysis. It is concluded that evaluating the structural integrity of impeller solids in the regime of random vibration is a feasible and efficient approach at the early design stage of compressors.


2014 ◽  
Vol 875-877 ◽  
pp. 2078-2086
Author(s):  
Long Tao Liu ◽  
Chuan Ri Li ◽  
Shuang Long Rong ◽  
You Gang Jin

In order to analyze the fatigue of the airborne product structure, the modal analysis and random vibration analysis are conducted for the product by using the finite element analysis software ANSYS. The modal analyzing results are compared with the modal test results and the finite element model is corrected. The stress response power spectral density is obtained from random vibration analyzing. A frequency domain method for calculating the fatigue damage of the structure is presented. The simulation results are in agreement with the reliability enhancement testing results. An optimization scheme for the product structure design is given.


2014 ◽  
Vol 487 ◽  
pp. 272-275
Author(s):  
Rui Feng Guo ◽  
Peng Li Wang

Based on the random vibration theory, fatigue strength theory and Miner cumulative damage theory, the formulas for estimation of fatigue life which can be coped with narrowband and broadband random vibration was derived by the peak distribution function. The power spectral density function of axle structure is deduced after the power spectral density of standard road and the vibration model of wheel had studying. Combined the power spectral density function with broadband random vibration fatigue life estimation formula, the fatigue life of axle structure was obtained. This method is simple and has a strong engineering practicality.


2010 ◽  
Vol 09 (03) ◽  
pp. 301-312
Author(s):  
FERDINAND GRÜNEIS

The alternating cluster process is a Poisson process the rate of which is modulated by an underlying two-state process. We derive the power spectral density of the alternating cluster process; besides random noise we obtain excess noise due to the impact of modulation.


Sign in / Sign up

Export Citation Format

Share Document