scholarly journals A Real-Time Optimal Gate Operation Model for Urban Drainage Systems

10.29007/ktzw ◽  
2018 ◽  
Author(s):  
Fatemeh Jafari ◽  
S. Jamshid Mousavi ◽  
Joong Hoon Kim

Flooding is a phenomenon that endangers human being life and property. There are many structural and non-structural options that can be considered in order to reduce destructive effects of flooding. In this study, we propose a new methodology to enhance the performance of a real-time optimal operation model for flood mitigation in urban drainage systems. An online real-time model is developed as a simulation-optimization approach that leads to optimal operational policies based on the real-time rainfall information. Rainfall-runoff processes and hydraulic routing in the pipes are simulated by the EPA stormwater management model (SWMM) which is linked to the particle swarm optimization (PSO) algorithm, evaluating the system operation performance for assorted sets of operating policies. The initial solution in the real-time model is obtained by a long-term optimal operation model based on historical past flood events. The approach is validated by applying it to a portion of the urban drainage system in Tehran, the capital of Iran, consisting of a prototype network of pipes and detention reservoir equipped with controllable gates. Results show that the proposed strategy in introducing a reasonable initial solution to the real-time model can successfully enhance the performance of the model.

2018 ◽  
Vol 15 (8) ◽  
pp. 750-759 ◽  
Author(s):  
Fatemeh Jafari ◽  
S. Jamshid Mousavi ◽  
Jafar Yazdi ◽  
Joong Hoon Kim

2015 ◽  
pp. 101-107 ◽  
Author(s):  
Vianney Courdent ◽  
Luca Vezzaro ◽  
Peter Steen Mikkelsen ◽  
Ane Loft Mollerup ◽  
Morten Grum

Water ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3432
Author(s):  
Margherita Altobelli ◽  
Sara Simona Cipolla ◽  
Marco Maglionico

The increase in waterproof surfaces, a typical phenomenon of urbanization, on the one hand, reduces the volume of rainwater that naturally infiltrates the subsoil and, on the other, it determines the increase in speeds, flow rates, and outflow volume surface; at the same time, it causes a qualitative deterioration of the water. This study researched the optimal management of urban drainage systems via the combined application of real-time control and green technologies. A hydraulic model of the sewer system of the suburbs of Bologna (Italy) was set up using the Environmental Protection Agency (EPA) Storm Water Management Model (SWMM) to evaluate the reduction in water volume and the masses of pollutants discharged in water bodies. The combined application of these technologies allows significantly reducing both the pollutants released into the receiving water bodies and the overflow volumes, while optimizing the operation of the treatment plants. Green technologies cause an average reduction equal to 45% in volume and 53% of total suspended solids (TSS) sent to the receiver. The modeled cases represent only some of the possible configurations achievable on urban drainage systems; the combined use of different solutions could lead to further improvements in the overall functioning of the drainage system.


2013 ◽  
Vol 10 (5) ◽  
pp. 293-299 ◽  
Author(s):  
T. Beeneken ◽  
V. Erbe ◽  
A. Messmer ◽  
C. Reder ◽  
R. Rohlfing ◽  
...  

2017 ◽  
Vol 78 ◽  
pp. 30-42 ◽  
Author(s):  
Giuseppina Garofalo ◽  
Andrea Giordano ◽  
Patrizia Piro ◽  
Giandomenico Spezzano ◽  
Andrea Vinci

Sign in / Sign up

Export Citation Format

Share Document