Magnetocaloric Effect in RFe10X2( X=Mo, V)

2018 ◽  
Vol 1 (1) ◽  
pp. 102-113
Author(s):  
Raghda Abu El-Nasr ◽  
Samy H. Aly ◽  
Sherif Yehia ◽  
Hala A. Sobh

We present a mean-field study on the magnetocaloric effect (MCE) in RFe10X2, where X=Mo, V, and R=Gd, Tb, Ho, Tm, Dy, Er, Nd for X=V. For X=Mo, R=Dy, Gd, and Nd. The two-sublattice model, involving the 4f (rare earth) and 3d(Fe) sublattices, is used. For both systems, magnetization, magnetic heat capacity, magnetic entropy and isothermal entropy change ∆Sm are calculated for different magnetic fields in the 0-5T range and the temperature range from 0 to 700K. Direct and inverse MCEs are shown to take place in these ferromagnetic/ferrimagnetic compounds. For a field change ∆H=5T, the maximum isothermal magnetic entropy change has been calculated for ferromagnetic NdFe10Mo2 compound to be 6.6 J/K mol at Tc=441 K. Both direct, and inverse MCEs have been found in ferrimagnetic compounds, e.g., for TmFe10V2, with maximum -∆Sm= J/K mol at Tc=521K and ∆Sm=  J/K mol at TN=127 K. Mean-field analysis is suitable for handling the systems we report on. Further study on the lattice and electronic contribution to entropy is planned.

Author(s):  
Ziyu Yang ◽  
Jun-Yi Ge ◽  
Shuangchen Ruan ◽  
Hongzhi Cui ◽  
Yu-Jia Zeng

Herein, we report on the magnetic and magnetocaloric properties of a distorted double-perovskite, Gd2ZnTiO6, through static magnetization, heat capacity measurements, and mean-field analysis. The most pronounced isothermal magnetic entropy change...


2011 ◽  
Vol 84-85 ◽  
pp. 667-670
Author(s):  
Guo Qiu Xie

In this paper, we report on the structure, magnetic properties and magnetocaloric effect in NaZn13-type LaFe11.1Co0.8Si1.1Bxalloys close to room temperature. The stable NaZn13cubic structure phase (space group isFm-3c) can easily obtained by annealing at 1080 °C for 225 hours. The maximal values of magnetic entropy change for LaFe11.1Co0.8Si1.1Bx(x=0.2, 0.25) were found to be 5.3 and 5.9 J/kg K at Curie temperature for a magnetic field change in 0-1.5 T, respectively. The calculated refrigerant capacity for a field change in 0–1.5 T is about 147 and 107 J/kg K, for LaFe11.1Co0.8Si1.1B0.2and LaFe11.1Co0.8Si1.1B0.25respectively, which is as larger as those of Gd(99.3%) alloy


2016 ◽  
Vol 1 (1) ◽  
pp. 5 ◽  
Author(s):  
M.S. Anikin ◽  
E.N. Tarasov ◽  
N.V. Kudrevatykh ◽  
M.A. Semkin ◽  
A.S. Volegov ◽  
...  

<p>In this work the results of measurements of heat capacity (C<sub>P</sub>) and magnetocaloric effect (MCE) in Er(Co<sub>1-</sub><sub>х</sub>Fe<sub>х</sub>)<sub>2</sub> system in the concentration range 0.07 ≤ x ≤ 0.80 are presented. Phase composition was controlled by X-ray difraction analysis. Heat capacity was measured in the temperature range 77-320 K. MCE has been studied within the temperature range 5-670 K in magnetic fields up to 70 kOe. It was found that Fe concentration increase caused the table-like (plateau) MCE temperature dependence for both magnetic entropy change date and direct ∆T-effect measurements independently on Fe concentration. The possible reasons of such behavior are discussed.</p>


2011 ◽  
Vol 685 ◽  
pp. 311-315
Author(s):  
Zhi Zeng ◽  
Xue Zhen Wang ◽  
Jian Huang ◽  
Jie Xiang ◽  
Xue Ling Hou

Gd5Si2Ge2-based alloys can exhibit a giant magnetocaloric effect (GMCE) which gives them the potential use in the cooling technologies[1].Through this studies, it can be found that the purity of Gd had a great impact on the magnetocaloric effect in Gd5Si2-xGe2-xZn2x alloys. When 3N Gd used and 2x=0.01, Gd5Si2-xGe2-xZn2x around the curie point of 280k get the maximum magnetic entropy change of 14.0 J/(Kg.K) under the external magnetic field change from 0 to 1T, but when 2N Gd used and 2x=0.05, Gd5Si2-xGe2-xZn2x around the curie point of 284.2k under the external magnetic field change 1T get the maximum magnetic entropy change 6.65 J/(Kg.K).


RSC Advances ◽  
2018 ◽  
Vol 8 (6) ◽  
pp. 3099-3107 ◽  
Author(s):  
Khadija Dhahri ◽  
N. Dhahri ◽  
J. Dhahri ◽  
K. Taibi ◽  
E. K. Hlil

In the present work, we have studied the universal critical behavior in the perovskite-manganite compound La0.7Ca0.1Pb0.2Mn0.95Al0.025Sn0.025O3.


Sign in / Sign up

Export Citation Format

Share Document