laves phases
Recently Published Documents


TOTAL DOCUMENTS

497
(FIVE YEARS 75)

H-INDEX

41
(FIVE YEARS 4)

Metals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 116
Author(s):  
Yunlu Jiang ◽  
Ying Kan ◽  
Huaining Chen

In order to reveal the creep failure behavior of novel modified 310S austenite steel welded joints, the creep life and microstructure evolution of the 310S austenite steel welded joints were investigated in this study. The rupture life was assessed to estimate the damage of the welded joint based on creep rupture tests performed at 600 °C in the stress range of 170–238 MPa. Compared with WM, HAZ facilitated the occurrence of creep failure in long term creep due to the combination of a smaller hardness value, a more heterogenous microstructure accompanied by coarsened M23C6, a larger grain size, higher KAM and Schmid factor. Discontinuous Laves phases appeared near the boundaries between the δ-ferrite and γ-austenite grains in the WM, and dislocation strengthening and precipitation strengthening were observed near the boundary in the BM. Furthermore, segregation elements were detected by APT and EDS adjacent to the boundary. Cr and C segregation near grain boundaries weaken the creep resistance in long term creep service.


Author(s):  
Ajay Kumar Maurya ◽  
Amit Kumar

Additive manufacturing technology is becoming popular in the industry because it allows the manufacturer to fabricate cost-effective, strong, lightweight, and complex-shaped parts directly from 3D design data as compared with the conventional manufacturing method. Inconel 718 alloy is the most demanding material in aviation as well as in the automobile industry, in terms of manufacturing high-performance parts. In this study, Inconel 718 samples were built using the direct metal laser sintering process, and standard heat treatment was performed on the samples to improve their microstructure and mechanical properties. The as-built samples exhibited good grain structure with fine laves phases, but the matrix was free from ?' and ?" phases. During the heat treatment, the strengthening phases ?' and ?" precipitated. The mechanical properties of as-built and heat-treated samples were analysed and compared. Tensile tests revealed that the direct-aged sample had the higher tensile strength compared with the other conditions, whereas the as-built samples had higher ductility. Finally, fractography and microstructure analysis were performed to measure the failure modes of tensile specimens.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Jiankun Xiong ◽  
Jianping Yang ◽  
Haiyan Zhao ◽  
Lin Yang ◽  
Yang Guo ◽  
...  

Creep rupture behavior of dissimilar weldments between FB2 and 30Cr1Mo1V heat-resistant steel by multipass welding at 783 K (510°C) under different stresses (260 to 420 MPa) was researched. The fitted creep rupture exponent is 14.53, and the 10,000 h extrapolating strength values predicted by the power law and Larson-Miller parameter show good agreement with experimental data. The samples exhibit a ductile fracture character and fracture in the weld fusion zone, which has a highly heterogeneous microstructure and grains with different morphologies and sizes and an obvious softening. There exist a decrease in the dislocation and precipitate density and an increase in the subgrain size in the weld metal after creep. The rupture is a transgranular fracture characterized by dimples as a result of microvoid coalescence. Laves phases along with copper-rich precipitates are observed in the vicinity of fracture surface, which creates a stress concentration that can cause transgranular fracture initiation.


Crystals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1535
Author(s):  
Monika Kušter ◽  
Anton Meden ◽  
Boštjan Markoli ◽  
Zoran Samardžija ◽  
Maja Vončina ◽  
...  

This study focused on the crystal and electronic structures of a newly discovered phase in the Al-Cr-Sc system. The latter two species do not mix in a binary alloy, but can be alloyed with aluminium in the vicinity of the Al2−xCrxSc composition, where 0.3 < x < 0.5. After preparation of the pure constituents via arc melting, high-temperature annealing at 990 °C for 240 h was required to achieve full mixing of the elements. A detailed characterisation of the crystal structure, alloy microstructure and stability was obtained using single-crystal X-ray diffraction (SCXRD) and powder X-ray diffraction (PXRD), in addition to transmission electron microscopy (TEM), especially in high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) mode, scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDXS) and differential scanning calorimetry (DSC) measurements. The crystal structure was refined to a hexagonal unit cell of the MgZn2 type, space group no. 194, P63/mmc, which belongs to the Laves phases family. Special attention was paid to the occupancy of the crystallographic sites that were filled by both Cr and Al atoms. First-principles calculations based on the density functional theory (DFT) were performed to investigate the electronic structure of this ternary phase. The total density of states (DOS) exhibited a pronounced sp character, where a shallow pseudo-gap was visible 0.5 eV below the Fermi energy that brought a small but definite contribution to the thermodynamic stability of the compound.


Metals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1962
Author(s):  
Roman Ryltsev ◽  
Vasiliy Gaviko ◽  
Svetlana Estemirova ◽  
Evgenii Sterkhov ◽  
Lubov Cherepanova ◽  
...  

One of the intriguing recent results in the field of high-entropy alloys is the discovery of single-phase equiatomic multi-component Laves intermetallics. However, there is no clear understanding that a combination of chemical elements will form such high-entropy compounds. Here we contribute to understanding this issue by modifying the composition of duodenary TiZrHfNbVCrMoMnFeCoNiAl (12x) alloy in which we recently reported the fabrication of hexagonal C14 Laves phase. We consider three alloys based on 12x: 7x = 12x-VCrMoMnFe, 12x + Sc, 12x + Be and observe that all of them crystalize with the formation of C14 Laves phase as a dominant structure. We report that 12x + Be alloy reveals a single-phase C14 structure with a very high concentration of structural defects and ultra-fine dendritic microstructure with an almost homogenous distribution of the constituted elements over the alloy matrix. The analysis of electrical and magnetic properties reveals that the Laves phases are Curie-Weiss paramagnets, which demonstrate metallic conduction; 7x and 12x alloys also reveal a pronounced Kondo-like anomaly. Analysis of experimental data as well as ab initio calculations suggest that chemical complexity and compositional disorder cause strong s-d band scattering and thus the rather high density of d-states in the conduction band.


Author(s):  
Roman Ryltsev ◽  
Svetlana Estemirova ◽  
Evgenii Sterkhov ◽  
Lubov Cherepanova ◽  
Denis Yagodin ◽  
...  

One of the intriguing recent results in the field of high-entropy alloys is the discovery of single-phase equiatomic multi-component Laves intermetallics. However, there is no clear understanding that a combination of chemical elements will form such high-entropy compounds. Here we contribute to understanding this issue by modifying the composition of duodenary TiZrHfNbVCrMoMnFeCoNiAl (12x) alloy in which we recently reported the fabrication of hexagonal C14 Laves phase. We consider three alloys based on 12x: 7x=12x-VCrMoMnFe, 12x+Sc, 12x+Be and observe that all of them crystalize with the formation of C14 Laves phase as a dominant structure. We report that 12x+Be alloy reveals single-phase C14 structure with very high concentration of structural defects and ultra-fine dendritic microstructure with almost homogenous distribution of the constituted elements over the alloy matrix. The 7x and 12x+Sc alloys contain C14 as a main phase and unknown impurity phases. To characterize the materials, we examine their heat capacity, electrical conductivity and magnetic properties. The measurements reveal that the Laves phases are Curie-Weiss paramagnets, which demonstrate metallic conduction; 7x and 12x alloys also reveal a pronounced Kondo-like anomaly. Analysis of experimental data as well as ab initio calculations suggests that chemical complexity and compositional disorder cause strong s-d band scattering and thus the rather high density of d-states in the conduction band. Analysis of the results suggests that the mechanism of Laves phase formation in multicomponent multi-principal element metallic alloys is may be the same as in polydisperse hardspheres mixtures. Another important conclusion is that the configurational entropy is a negligible factor in the stabilization of multi-element Laves phases.


2021 ◽  
Vol 2101 (1) ◽  
pp. 012074
Author(s):  
Weixin Yu ◽  
Zhen Dai ◽  
Jifeng Zhao ◽  
Lulu Fang ◽  
Yiwen Zhang

Abstract The strength of P92 steel (tensile strength, specified plastic elongation strength) will decrease after its hardness is reduced, ferrite and carbides forming the structure. Carbides of grain size 5-6 are precipitated in the grains and grain boundaries. The martensite lath shape has completely disappeared. M23C6 carbide coarsened obviously, with a maximum size of about 500nm; The Laves phase is also aggregated and coarsened, connecting in a chain shape with a maximum size of more than 500nm. Evolution of microstructure, namely the obvious coarsening of M23C6 carbides and the aggregation and connection of Laves phases in a chain shape, are the main causes for rapid decrease in the stability of the material substructure and evident decline in mechanical properties and hardness. In addition, the MX phase did not change significantly, hardly affecting the hardness reduction of P92 steel.


2021 ◽  
Vol 2103 (1) ◽  
pp. 012196
Author(s):  
G A Politova ◽  
M A Ganin ◽  
A B Mikhailova ◽  
D A Morozov ◽  
K E Pankov ◽  
...  

Abstract Polycrystalline TbxDy1-xR0.1Fe2-zCoz (R = Nd, Pr, x = 0.2, 0.3; z = 0, 1.3) cubic Laves phase alloys with MgCu2-type structure were prepared by arc melting followed by homogenizing annealing. The crystal structure, magnetic properties, and magnetostriction have been investigated. Compounds with high values of magnetostrictive susceptibility were found in the temperature range 150-300 K. Compounds with partial substitution of cobalt for iron demonstrate a change in the sign of anisotropic magnetostriction. This work continues the search for magnetostrictive materials with inexpensive neodymium and praseodymium.


Metals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1717
Author(s):  
Beytullah Aydogan ◽  
Himanshu Sahasrabudhe

Cobalt superalloys such as Tribaloys are widely used in environments that involve high temperatures, corrosion, and wear degradation. Additive manufacturing (AM) processes have been investigated for fabricating Co-based alloys due to design flexibility and efficient materials usage. AM processes are suitable for reducing the manufacturing steps and subsequently reducing manufacturing costs by incorporating multi-materials. Laser directed energy deposition (laser DED) is a suitable AM process for fabricating Co-based alloys. T800 is one of the commercially available Tribaloys that is strengthened through Laves phases and of interest to diverse engineering fields. However, the high content of the Laves phase makes the alloy prone to brittle fracture. In this study, a Ni-20%Cr alloy was used to improve the fabricability of the T800 alloy via laser DED. Different mixture compositions (20%, 30%, 40% NiCr by weight) were investigated. The multi-material T800 + NiCr alloys were heat treated at two different temperatures. These alloy chemistries were characterized for their microstructural, phase, and mechanical properties in the as-fabricated and heat-treated conditions. SEM and XRD characterization indicated the stabilization of ductile phases and homogenization of the Laves phases after laser DED fabrication and heat treatment. In conclusion, the NiCr addition improved the fabricability and structural integrity of the T800 alloy.


Author(s):  
R. Sokkalingam ◽  
B. Pravallika ◽  
K. Sivaprasad ◽  
V. Muthupandi ◽  
K. G. Prashanth

AbstractHigh-entropy alloy, a new generation material, exhibits superior structural properties. For high-temperature applications, where dissimilar materials are in demand, HEAs may be joined with commercially available structural materials to improve their performance-life ratio. In this connection, a dissimilar joint was fabricated by gas tungsten arc welding between Al0.1CoCrFeNi-HEA and Inconel 718. The columnar dendritic grains are growing epitaxially at the Al0.1CoCrFeNi-HEA/weld metal interface, where their compositions are matching. While the composition misfit at the weld metal/Inconel 718 interface, reveals the non-epitaxial mode of solidification. In addition, the fusion zone exhibits the porosity and micro-segregation of NbC and Laves phases. The joint shows a joint efficiency of ~ 88%, where the strength is observed to be 644 MPa with 21% ductility. The results demonstrate the applicability of GTAW in fabricating the dissimilar weld joints between HEA and Inconel 718 for structural applications. Graphic abstract


Sign in / Sign up

Export Citation Format

Share Document