scholarly journals Partial melts in upper mantle nodules from Labrador kimberlites

Keyword(s):  
2020 ◽  
Vol 117 (31) ◽  
pp. 18285-18291
Author(s):  
Man Xu ◽  
Zhicheng Jing ◽  
Suraj K. Bajgain ◽  
Mainak Mookherjee ◽  
James A. Van Orman ◽  
...  

Deeply subducted carbonates likely cause low-degree melting of the upper mantle and thus play an important role in the deep carbon cycle. However, direct seismic detection of carbonate-induced partial melts in the Earth’s interior is hindered by our poor knowledge on the elastic properties of carbonate melts. Here we report the first experimentally determined sound velocity and density data on dolomite melt up to 5.9 GPa and 2046 K by in-situ ultrasonic and sink-float techniques, respectively, as well as first-principles molecular dynamics simulations of dolomite melt up to 16 GPa and 3000 K. Using our new elasticity data, the calculated VP/VSratio of the deep upper mantle (∼180–330 km) with a small amount of carbonate-rich melt provides a natural explanation for the elevated VP/VSratio of the upper mantle from global seismic observations, supporting the pervasive presence of a low-degree carbonate-rich partial melt (∼0.05%) that is consistent with the volatile-induced or redox-regulated initial melting in the upper mantle as argued by petrologic studies. This carbonate-rich partial melt region implies a global average carbon (C) concentration of 80–140 ppm. by weight in the deep upper mantle source region, consistent with the mantle carbon content determined from geochemical studies.


1972 ◽  
Vol 47 ◽  
pp. 129-164
Author(s):  
G. M. Biggar ◽  
M. J. O'hara ◽  
D. J. Humphries ◽  
A. Peckett

Experimental data show Apollo 11 and 12 lava compositions to be controlled by fractional crystallization close to the lunar surface, in a process which yields achondrite-like igneous rocks as underlying complementary crystal accumulates. Volatilization losses during eruption can account for most other chemical differences between lunar lavas and common terrestrial magmas. No specific hypotheses of the composition, mineralogy, or origin of lunar interior can be sustained until the extent of these processes is known. A terrestrial upper-mantle-type lunar interior cannot yet be excluded. The assumption that maria surface lavas are primary partial melts is unjustified and leads to a postulated lunar interior with too low Mg/Mg+Fe to serve as a source for Apollo 14 and other igneous liquids. Other workers' uncontrolled visual estimates of crystallinity in experimental charges, purporting to show that maria lavas were not modified by low pressure fractionation, are irreconcilable with the chemistry of the residual liquids developed in our ‘reversed’ equilibrium experiments. The undesirability of using glass as a starting material for this type of experiment is re-emphasized.


Geology ◽  
2001 ◽  
Vol 29 (5) ◽  
pp. 451 ◽  
Author(s):  
C. Pin ◽  
J.L. Paquette ◽  
P. Monchoux ◽  
T. Hammouda

Sign in / Sign up

Export Citation Format

Share Document