scholarly journals Maria Lavas, Mascons, Layered Complexes, Achondrites and the Lunar Mantle

1972 ◽  
Vol 47 ◽  
pp. 129-164
Author(s):  
G. M. Biggar ◽  
M. J. O'hara ◽  
D. J. Humphries ◽  
A. Peckett

Experimental data show Apollo 11 and 12 lava compositions to be controlled by fractional crystallization close to the lunar surface, in a process which yields achondrite-like igneous rocks as underlying complementary crystal accumulates. Volatilization losses during eruption can account for most other chemical differences between lunar lavas and common terrestrial magmas. No specific hypotheses of the composition, mineralogy, or origin of lunar interior can be sustained until the extent of these processes is known. A terrestrial upper-mantle-type lunar interior cannot yet be excluded. The assumption that maria surface lavas are primary partial melts is unjustified and leads to a postulated lunar interior with too low Mg/Mg+Fe to serve as a source for Apollo 14 and other igneous liquids. Other workers' uncontrolled visual estimates of crystallinity in experimental charges, purporting to show that maria lavas were not modified by low pressure fractionation, are irreconcilable with the chemistry of the residual liquids developed in our ‘reversed’ equilibrium experiments. The undesirability of using glass as a starting material for this type of experiment is re-emphasized.

2017 ◽  
Vol 114 (36) ◽  
pp. 9547-9551 ◽  
Author(s):  
James M. D. Day ◽  
Frédéric Moynier ◽  
Charles K. Shearer

The abundance of volatile elements and compounds, such as zinc, potassium, chlorine, and water, provide key evidence for how Earth and the Moon formed and evolved. Currently, evidence exists for a Moon depleted in volatile elements, as well as reservoirs within the Moon with volatile abundances like Earth’s depleted upper mantle. Volatile depletion is consistent with catastrophic formation, such as a giant impact, whereas a Moon with Earth-like volatile abundances suggests preservation of these volatiles, or addition through late accretion. We show, using the “Rusty Rock” impact melt breccia, 66095, that volatile enrichment on the lunar surface occurred through vapor condensation. Isotopically light Zn (δ66Zn = −13.7‰), heavy Cl (δ37Cl = +15‰), and high U/Pb supports the origin of condensates from a volatile-poor internal source formed during thermomagmatic evolution of the Moon, with long-term depletion in incompatible Cl and Pb, and lesser depletion of more-compatible Zn. Leaching experiments on mare basalt 14053 demonstrate that isotopically light Zn condensates also occur on some mare basalts after their crystallization, confirming a volatile-depleted lunar interior source with homogeneous δ66Zn ≈ +1.4‰. Our results show that much of the lunar interior must be significantly depleted in volatile elements and compounds and that volatile-rich rocks on the lunar surface formed through vapor condensation. Volatiles detected by remote sensing on the surface of the Moon likely have a partially condensate origin from its interior.


2021 ◽  
pp. 1-38
Author(s):  
Kenji Miki ◽  
Ali Ameri

Abstract There is a need to improve predictions of losses resulting from large eddy simulations (LES) of low-pressure turbines (LPT) in gas turbines. This may be done by assessing the accuracy of predictions against validation data and understanding the source of any inaccuracies. LES is a promising approach for capturing the laminar/turbulent transition process in a LPT. In previous studies, the authors utilized LES to model the flow field over a Variable Speed Power Turbine (VSPT) blade and successfully captured characteristic features of separation/reattachment and transition on the suction side at both the cruise (positive incidence) and take-off conditions (negative incidence) and as well, simulated the effect of freestream turbulence (FST) on those phenomena. The predicted pressure loading profiles agreed well with the experimental data for both a high and a low FST case at a Reynolds number of Reex = 220,000. In this paper, we present wake profiles resulting from computations for a range of FST values. Although the predicted wake profiles for the lowest FST case (Tu = 0.5%) matched the experimental data, at higher FST (Tu = 10-15%,) the wake was wider than the experimentally measured wake and for both cases were displaced laterally when compared to the experimental measurements. In our investigation of the causes of the said discrepancies we have identified important effects which could strongly influence the predicted wake profile. Predicted losses were improved by assuring the validity of the flow solution.


2021 ◽  
Vol 143 (2) ◽  
Author(s):  
M. Bolinches-Gisbert ◽  
David Cadrecha Robles ◽  
Roque Corral ◽  
Fernando Gisbert

Abstract This article compares experimental and numerical data for a low-speed high-lift low pressure turbine (LPT) cascade under unsteady flow conditions. Three Reynolds numbers representative of LPTs have been tested, namely, 5 × 104, 105, and 2 × 105; at two reduced frequencies, fr = 0.5 and 1, also representative of LPTs. The experimental data were obtained at the low-speed linear cascade wind tunnel at the Polytechnic University of Madrid using hot wire, Laser Doppler Velocimetry (LDV), and pressure tappings. The numerical solver employs a sixth-order compact scheme based on the flux reconstruction method for spatial discretization and a fourth-order Runge–Kutta method to march in time. The longest case ran 550 h on 40 GPUs to reach a statistically periodic state. Pressure coefficients around the profile, boundary layer profiles and exit cross section distributions of velocity, pressure loss defect, shear Reynolds stress, and angle are compared against high-quality experimental data. Cascade loss and exit angle have also been compared against the experimental data. Very good agreement between experimental and numerical data is seen. The results demonstrate the suitability of the present methodology to predict the aerodynamic properties of unsteady flows around LPT linear cascades accurately.


2020 ◽  
Vol 177 (5) ◽  
pp. 965-980
Author(s):  
Robert J. Stern ◽  
Kamal Ali ◽  
Paul D. Asimow ◽  
Mokhles K. Azer ◽  
Matthew I. Leybourne ◽  
...  

We analysed gabbroic and dioritic rocks from the Atud igneous complex in the Eastern Desert of Egypt to understand better the formation of juvenile continental crust of the Arabian–Nubian Shield. Our results show that the rocks are the same age (U–Pb zircon ages of 694.5 ± 2.1 Ma for two diorites and 695.3 ± 3.4 Ma for one gabbronorite). These are partial melts of the mantle and related fractionates (εNd690 = +4.2 to +7.3, 87Sr/86Sri = 0.70246–0.70268, zircon δ18O ∼ +5‰). Trace element patterns indicate that Atud magmas formed above a subduction zone as part of a large and long-lived (c. 60 myr) convergent margin. Atud complex igneous rocks belong to a larger metagabbro–epidiorite–diorite complex that formed as a deep crustal mush into which new pulses of mafic magma were periodically emplaced, incorporated and evolved. The petrological evolution can be explained by fractional crystallization of mafic magma plus variable plagioclase accumulation in a mid- to lower crustal MASH zone. The Atud igneous complex shows that mantle partial melting and fractional crystallization and plagioclase accumulation were important for Cryogenian crust formation in this part of the Arabian–Nubian Shield.Supplementary material: Analytical methods and data, calculated equilibrium mineral temperatures, results of petrogenetic modeling, and cathodluminesence images of zircons can be found at https://doi.org/10.6084/m9.figshare.c.4958822


1985 ◽  
Vol 49 (350) ◽  
pp. 71-75 ◽  
Author(s):  
M. J. Rubenach ◽  
C. Cuff

AbstractEndoskarns formed where a swarm of diorite dykes have intruded calcite marble at Redcap Creek include an inner melilite-dominated, a wollastonite-dominated, and an outer massive tilleyite zone in contact with marble. The massive tilleyite is unusual in that it is coarse-grained (prisms 2–15 cm in length) and its deep grey colour contrasts with the lighter coloured varieties described elsewhere. A chemical analysis gives a formula close to ideal, with only minor substitution of Al, Ti, and Mg. Refined unit cell parameters are in close agreement with those quoted in the literature. The skarns have clearly formed by transport of Si, Mg, Fe, Al, and Ti from the igneous rocks, and Ca in the reverse direction from the marble. Activity diagrams derived from experimental data are most useful in interpreting the zonal sequence of endoskarns, and preliminary results suggest mass transfer at low Xco2 and temperature of the order of 800°C or higher for the formation of the massive tilleyite.


1992 ◽  
Vol 87 (9) ◽  
pp. 375-387 ◽  
Author(s):  
Ken-ichiro AOKI ◽  
Takeyoshi YOSHIDA ◽  
Shigeo ARAMAKI ◽  
Hajime KURASAWA

2014 ◽  
Vol 136 (11) ◽  
Author(s):  
Martin Lipfert ◽  
Jan Habermann ◽  
Martin G. Rose ◽  
Stephan Staudacher ◽  
Yavuz Guendogdu

In a joint project between the Institute of Aircraft Propulsion Systems (ILA) and MTU Aero Engines, a two-stage low pressure turbine is tested at design and strong off-design conditions. The experimental data taken in the Altitude Test Facility (ATF) aims to study the effect of positive and negative incidence of the second stator vane. A detailed insight and understanding of the blade row interactions at these regimes is sought. Steady and time-resolved pressure measurements on the airfoil as well as inlet and outlet hot-film traverses at identical Reynolds number are performed for the midspan streamline. The results are compared with unsteady multistage computational fluid dynamics (CFD) predictions. Simulations agree well with the experimental data and allow detailed insights in the time-resolved flow-field. Airfoil pressure field responses are found to increase with positive incidence whereas at negative incidence the magnitude remains unchanged. Different pressure to suction side (SS) phasing is observed for the studied regimes. The assessment of unsteady blade forces reveals that changes in unsteady lift are minor compared to changes in axial force components. These increase with increasing positive incidence. The wake-interactions are predominating the blade responses in all regimes. For the positive incidence conditions, vane 1 passage vortex fluid is involved in the midspan passage interaction, leading to a more distorted three-dimensional (3D) flow field.


Sign in / Sign up

Export Citation Format

Share Document