Greenhouse culture experiments on Kuehneromyces mutabilis

Karstenia ◽  
2017 ◽  
Vol 57 (1-2) ◽  
pp. 17-32
Author(s):  
Jouni Issakainen ◽  
Kati Pihlaja ◽  
Jenni Smolander
Keyword(s):  
2018 ◽  
Vol 28 (3) ◽  
pp. 332-336
Author(s):  
Lyn A. Gettys ◽  
Kimberly A. Moore

Wetland restoration is an important way to improve ecosystem services, but many wetland nurseries lack the facilities that are traditionally used to produce large numbers of native plants used in these projects. Our goal was to evaluate growth and performance of four wetland species in a variety of substrates, fertilizer regimes, and irrigation methods under greenhouse conditions. Plants were grown in pots with drainage holes filled with one of four substrates (potting substrate, topsoil, sand, 50/50 mix of topsoil, and sand) amended with 0, 1, 2, or 4 g of 15N–3.9P–10K controlled-release fertilizer per liter of substrate. Irrigation was supplied via an overhead system or subirrigation. After 16 weeks of production, plants were scored for visual quality and plant height before a destructive harvest. Broadleaf sagittaria (Sagittaria latifolia) was mostly unaffected by substrate type but performed best when subirrigated and fertilized with 4 g·L−1 of fertilizer. Growth of skyflower (Hydrolea corymbosa) and cardinal flower (Lobelia cardinalis) was best when fertilized with 2 or 4 g·L−1 of fertilizer and grown using overhead irrigation. String lily (Crinum americanum) was unaffected by substrate type but produced the largest plants when subirrigated. These experiments provide guidance for cultivating these wetland species under greenhouse conditions, which may allow growers to efficiently produce plant material needed for the restoration market.


1977 ◽  
Vol 70 (6) ◽  
pp. 808-810 ◽  
Author(s):  
M. Sanchez Riviello ◽  
R. H. Rhode ◽  
W. G. Hart ◽  
P. D. Lara
Keyword(s):  

HortScience ◽  
1990 ◽  
Vol 25 (9) ◽  
pp. 1136d-1136
Author(s):  
Thomas E. Marler

Salinity effects on growth and net gas exchange of carambola (Averrhoa carambola L.) examined in were greenhouse culture with ten-month-old seedlings in perlite: peat: sand: pine bark chip medium in 5.1 liter (21 cm top dia.) containers. Treatments of 0.05, 5.1, 9.5, or 13.9 dS·m-1 were obtained by dissolving ca. 0, 2.5, 5.0, or 7.5 g of dehydrated sea salt per liter of rain water and delivered from elevated tanks by gravity to dribble ring emitters in containers via polyethylene and q icro tubing. All plants except control plants received 5.1 dS·m-1 beginning 25 Nov., and concentration was gradually increased for the two highest salinity levels until reaching 9.5 dS·m-1 on 3 Dec. and 13.9 dS·m-1 on 7 Dec. Plants were watered twice weekly until 1 March 1990. Stomatal conductance was determined (LI-COR 1600 steady-state diffusion porometer) on 7 day intervals beginning 24 Nov. Growth was determined as leaf area (LI-COR 3000 area meter), plant dry weight, and trunk diameter. Stomatal conductance declined in all salinity levels to 50% or less of controls by day 12, with a gradual further decline thereafter. Leaf area, plant dry weight, and trunk diameter declined linearly with increased salinity.


HortScience ◽  
2004 ◽  
Vol 39 (4) ◽  
pp. 835D-836
Author(s):  
Shannon E. Beach* ◽  
Terri W. Starman

Vegetative annuals are increasing in popularity among greenhouse growers and consumers but little is known about their postharvest shelf life. Twenty-two cultivars from ten species of vegetative annuals were grown to marketability with optimum greenhouse culture. Plants were then subjected to one of three shipping durations (0, 1, or 2 days) in simulated shipping i.e., a growth chamber at 26.7 ± 0.3 °C, 0 μmol·m-2·s-1, and 50% relative humidity. The plants were then moved to simulated postharvest environment i.e., growth room at 21.1 ± 1.3 °C and 6 μmol·m-2·s-1 to evaluate shelf life. Flower number and plant quality rating were measured weekly in addition to observations of plant appearances. Some of the postharvest disorders noted on several species and cultivars were stem die back, leaf chlorosis, stem elongation, bud abortion, flower drop, and flower fading. The majority of the cultivars maintained their quality one-week postharvest although flower drop was common. After the first week of shelf life, decline in vegetative and reproductive tissues were noted in most plants. Cultivars from nine species: Argyranthemum frutescens (L.) Sch. Bip, Bracteantha bracteata (Vent.) Anderb. & Haegi, Calibrachoa hybrid Lave Lex, Diascia ×hybrida, Lantana camara L., Nemesia ×hybrida, Petunia ×hybrida, Sutera hybrida, and Sutera cordata showed decreased flower number and/or quality rating due to shipping duration, with increased shipping duration causing accelerated postharvest disorders. The only species unaffected by shipping duration was Angelonia angustifolia Benth.


HortScience ◽  
1999 ◽  
Vol 34 (4) ◽  
pp. 638-640 ◽  
Author(s):  
Jose Lopez-Medina ◽  
James N. Moore

Root cuttings of A-1836, APF-13, and NC194 primocane-fruiting (PF) blackberry (Rubus subgenus Rubus) genotypes were dug from the field on 31 July 1997 and stored in plastic bags at 2 °C for 32 days. On 1 Sept. freshly dug root cuttings, along with the cold-treated ones, were planted in pots, which were kept in a lath house for 4 weeks and then moved to a heated greenhouse under natural daylength. Cold-treatment hastened emergence of all genotypes. Transition from vegetative to floral phase was first observed in cold-treated A-1836 and APF-13 at the fifth node, with floral appendages clearly evident in both genotypes at the seventh node 45 days after planting (DAP). Bloom started on 26 Nov. and 5 Dec. 1997 and the first fruits were picked on 10 and 25 Jan. 1998 in cold-treated APF-13 and A-1836, respectively. Plants of cold-treated NC194 and of all non-cold-treated genotypes remained stunted with rosetted leaves, showing no signs of floral initiation until 150 DAP. These findings show that exposure to chilling prior to shoot emergence greatly promotes flowering in PF blackberries, and may have application in greenhouse culture of blackberry.


Sign in / Sign up

Export Citation Format

Share Document