A mixed problem for the third-order equation with multiple characteristics

2021 ◽  
Vol 65 (2) ◽  
1972 ◽  
Vol 13 (2) ◽  
pp. 147-152 ◽  
Author(s):  
Don B. Hinton

Numerous formulae have been given which exhibit the asymptotic behaviour as t → ∞solutions ofwhere F(t) is essentially positive and Several of these results have been unified by a theorem of F. V. Atkinson [1]. It is the purpose of this paper to establish results, analogous to the theorem of Atkinson, for the third order equationand for the fourth order equation


1975 ◽  
Vol 27 (1) ◽  
pp. 106-110 ◽  
Author(s):  
J. Michael Dolan ◽  
Gene A. Klaasen

Consider the nth order linear equationand particularly the third order equationA nontrivial solution of (1)n is said to be oscillatory or nonoscillatory depending on whether it has infinitely many or finitely many zeros on [a, ∞). Let denote respectively the set of all solutions, oscillatory solutions, nonoscillatory solutions of (1)n. is an n-dimensional linear space. A subspace is said to be nonoscillatory or strongly oscillatory respectively if every nontrivial solution of is nonoscillatory or oscillatory. If contains both oscillatory and nonoscillatory solutions then is said to be weakly oscillatory.


2014 ◽  
Vol 2014 ◽  
pp. 1-5
Author(s):  
Long Wei ◽  
Yang Wang

We consider the Lagrangian and the self-adjointness of a generalized regularized long-wave equation and its transformed equation. We show that the third-order equation has a nonlocal Lagrangian with an auxiliary function and is strictly self-adjoint; its transformed equation is nonlinearly self-adjoint and the minimal order of the differential substitution is equal to one. Then by Ibragimov’s theorem on conservation laws we obtain some conserved qualities of the generalized regularized long-wave equation.


Sign in / Sign up

Export Citation Format

Share Document