scholarly journals Trends in the content of acidifying and eutrophying compounds in atmospheric precipitation in an urbanized area

Author(s):  
S. V. Kakareka ◽  
Yu. G. Kokosh ◽  
M. A. Kudrevich

The trends in changing the content of sulfur and nitrogen in atmospheric precipitation in the territory of Minsk over an 18-year period are characterized on the basis of the analysis of the monitoring results of the chemical composition of atmospheric precipitation at the experimental site. A downtrend in the sulfur and nitrogen content combined with an uptrend in the precipitation acidity was identified. An average decrease (trend) in the content of sulfur in atmospheric precipitation for 2002–2019 was 0.019 mg S/dm3/year, of oxidized nitrogen – 0.008 mg/dm3, of reduced nitrogen – 0.019 mg/dm3. Over an 18-year period, the changes in the content of sulfur and nitrogen in atmospheric precipitation decreased the deposition of sulfur on average by 31.3 kg/km2/year, of oxidized nitrogen – by 15.4 kg/km2/year, of reduced nitrogen – by 25.6 kg/km2/year. It is shown that for the period from 2005 to 2012, the acidification potential of the natural environment decreased parallel to the reduction of the sulfur and nitrogen deposition; in the subsequent period, the trend of the acidification potential basically follows the trend of the precipitation of the main cations. It is revealed that the rates of average reduction in the content of oxidized sulfur and oxidized nitrogen in atmospheric precipitation in Minsk for the period from 2002 to 2017 are comparable to the rates of reduction of these compounds at the stations of the EMEP Program in Europe, and exceed those for reduced nitrogen.

Metallurgist ◽  
2010 ◽  
Vol 54 (3-4) ◽  
pp. 210-225 ◽  
Author(s):  
A. G. Shalimov ◽  
A. M. Nemenov

MRS Bulletin ◽  
2010 ◽  
Vol 35 (3) ◽  
pp. 219-225 ◽  
Author(s):  
Oskar Paris ◽  
Ingo Burgert ◽  
Peter Fratzl

AbstractNatural materials display a wealth of structures and fulfill a variety of functions. Hierarchical structuring is one of the keys to providing multifunctionality and to adapting to varying needs of an organism. As a consequence, the natural environment represents not only a direct and renewable source of useful materials, such as wood, plant fibers, or even proteins of pharmaceutical importance, but also an enormous “database” of structures with exceptional mechanical, optical, or magnetic properties. Rather than focusing on the direct use of natural materials, this article discusses the use of structures that appeared in evolution and have been implemented in artificial materials of an entirely different type and chemical composition. This may be done either by directly copying the structure (biotemplating) or by extracting the design principles encoded in them for the fabrication of novel bioinspired materials.


Sign in / Sign up

Export Citation Format

Share Document